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Abstract

Recent work suggests that the 9-repeat (9R) allele located in the 39UTR VNTR of the SLC6A3 gene increases risk of
posttraumatic stress disorder (PTSD). However, no study reporting this association to date has been based on population-
based samples. Furthermore, no study of which we are aware has assessed the joint action of genetic and DNA methylation
variation at SLC6A3 on risk of PTSD. In this study, we assessed whether molecular variation at SLC6A3 locus influences risk of
PTSD. Participants (n = 320; 62 cases/258 controls) were drawn from an urban, community-based sample of predominantly
African American Detroit adult residents, and included those who had completed a baseline telephone survey, had provided
blood specimens, and had a homozygous genotype for either the 9R or 10R allele or a heterozygous 9R/10R genotype. The
influence of DNA methylation variation in the SLC6A3 promoter locus was also assessed in a subset of participants with
available methylation data (n = 83; 16 cases/67 controls). In the full analytic sample, 9R allele carriers had almost double the
risk of lifetime PTSD compared to 10R/10R genotype carriers (OR = 1.98, 95% CI = 1.02–3.86), controlling for age, sex, race,
socioeconomic status, number of traumas, smoking, and lifetime depression. In the subsample of participants with available
methylation data, a significant (p = 0.008) interaction was observed whereby 9R allele carriers showed an increased risk of
lifetime PTSD only in conjunction with high methylation in the SLC6A3 promoter locus, controlling for the same covariates.
Our results confirm previous reports supporting a role for the 9R allele in increasing susceptibility to PTSD. They further
extend these findings by providing preliminary evidence that a ‘‘double hit’’ model, including both a putatively reduced-
function allele and high methylation in the promoter region, may more accurately capture molecular risk of PTSD at the
SLC6A3 locus.

Citation: Chang S-C, Koenen KC, Galea S, Aiello AE, Soliven R, et al. (2012) Molecular Variation at the SLC6A3 Locus Predicts Lifetime Risk of PTSD in the Detroit
Neighborhood Health Study. PLoS ONE 7(6): e39184. doi:10.1371/journal.pone.0039184

Editor: Olga Y. Gorlova, The University of Texas M. D. Anderson Cancer Center, United States of America

Received December 9, 2011; Accepted May 21, 2012; Published June 26, 2012

Copyright: � 2012 Chang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by National Institutes of Health Grants DA022720, DA022720-S1, and MH088283. Additional support was provided by the
Robert Wood Johnson Health and Society Scholars Small Grant Program and the University of Michigan Office of the Vice President for Research Faculty Grants
and Awards Program; and by the Wayne State University Research Excellence Fund. The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing Interests: Monica Uddin (the corresponding author) is currently an Academic Editor at PLoS ONE. This is the only potential COI among the
submitting authors. This does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials.

* E-mail: monica.uddin@wayne.edu

Introduction

Posttraumatic stress disorder (PTSD) is a complex disorder

characterized by three symptom clusters including re-experienc-

ing, avoidance, and hyperarousal [1]. Twin studies have shown

that genetic influences account for a substantial proportion (35–

70%) of variance in PTSD risk [2–4]. However, the molecular and

genetic basis of this inherited liability is still largely unknown.

The SLC6A3 (solute carrier family 6 (neurotransmitter trans-

porter, dopamine), member 3; also known as DAT1 or DAT) locus

is a biologically plausible candidate gene for PTSD. SLC6A3

encodes a dopamine transporter, a member of the sodium- and

chloride-dependent neurotransmitter transporter family, which

plays a key role in the regulation of dopaminergic neurotransmis-

sion by removing dopamine from the synaptic cleft via reuptake

through the transporter [5]. The role of dopamine in the etiology

of PTSD is supported by findings of elevated urinary [6] and

plasma [7] levels of dopamine among those affected by the

disorder, and by reports of a significant correlation between

dopamine concentration and severity of PTSD symptoms in

affected individuals [6]. Nevertheless, studies investigating the

association between genetic variation at the SLC6A3 locus and

PTSD have produced conflicting results.

The SLC6A3 locus is characterized by a 40-base-pair variable

number tandem repeat (VNTR) polymorphism in its 39-untrans-

lated region (UTR) which can be present in 3 to 11 copies [8].

Across most populations [9], including African-americans, [9,10]

the 10-repeat (10R) allele is the most frequent followed by the 9-
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repeat (9R) allele. The VNTR polymorphism has been shown to

have a functional effect on SLC6A3 gene expression; however,

some studies indicate that 10R alleles enhance the SLC6A3 gene

expression compared to 9R alleles whereas others indicate the

opposite [11–18]. Similarly, results investigating the influence of

the SLC6A3 VNTR polymorphism on PTSD risk have been

equivocal, with, for example, the 9R allele related to an increased

risk of PTSD and/or hypervigilance symptoms in three studies

[19–21], but not in an additional, recent multigenerational study

of families exposed to a natural disaster [22].

The complexity of the association between SLC6A3 and PTSD

may be related, in part, to emerging evidence that not only

genetic, but also epigenetic factors shape risk of mental illness.

Epigenetic dysregulation has been implicated in pathogenesis of

several psychiatric disorders such as depression [23], schizophre-

nia [24], eating disorders [25], and PTSD [26,27]. However, little

is known about the epigenetic processes regulating SLC6A3, and

the role of SLC6A3 methylation in PTSD has, to our knowledge,

not yet been reported. To better elucidate the molecular basis

shaping risk of PTSD at the SLC6A3 locus, here we investigate

whether the 9R or 10R allele is associated with lifetime PTSD.

Using specimens drawn from a population-based cohort, the

Detroit Neighborhood Health Study, we assess this putative

PTSD-associated genetic variation in one of the largest datasets

reported to date. We further conduct an exploratory, pilot

investigation of interacting genetic and epigenetic SLC6A3

variation shaping risk of PTSD using a subset of individuals from

our larger genetic dataset.

Materials and Methods

Subjects and Ethics Statement
The Detroit Neighborhood Health Study (DNHS) recruited

1,547 adults aged 18 years or older at baseline from the city of

Detroit. Data for this study were obtained from consenting

participants during this baseline survey year. At wave 1 (baseline),

lifetime trauma exposure and PTSD were assessed using

structured telephone interviews, and each participant received

$25 for their participation in the survey. All survey participants

were offered the opportunity to provide venipuncture (VP) blood

specimens for the biospecimen component of the study (which

included testing of immune and inflammatory markers from serum

as well as genetic testing of DNA) and received an additional $25 if

they elected to do so. VP specimens were obtained via written,

informed consent from a subsample of eligible participants during

wave 1 (n = 501). The DNHS was approved by the Institutional

Review Board at the University of Michigan (HUM00014138;

FWA00004969; OHRP IRB IRB00000245). More details regard-

ing the DNHS can be found in [27].

The original sample for this study consisted of 394 individuals,

who were randomly selected from the consenting participants of

the blood draw, blinded to their PTSD status. Because the

diagnosis of PTSD requires a triggering trauma in order to be

expressed, we further restricted our analysis to 362 people who

had experienced one or more traumatic events. The high

prevalence of lifetime trauma exposure in this genotyped sample

(91.9%) is consistent with the prevalence of the full DNHS survey

sample [28] and with earlier work focused on adults in the Metro

Detroit area [29]. Due to the low frequency of 39UTR VNTR

polymorphism of SLC6A3 other than 9R and 10R, only the

individuals carrying 9R/9R, 9R/10R, or 10R/10R genotypes

(n = 320; 62 PTSD cases and 258 non-PTSD controls) were

included in the final analysis. The SLC6A3 gene-methylation

interaction was tested in a pilot sample of 83 individuals (16 cases/

67 controls) who also had DNA methylation data.

Assessment of Post-traumatic Stress Disorder and Other
Survey-based Variables

Lifetime PTSD was assessed via telephone interview using a

modified version of the PTSD Checklist (PCL-C) [30], with

additional questions about duration, timing, and impairment or

disability due to the symptoms in order to identify PTSD cases that

were compatible with DSM-IV criteria. Participants were asked to

identify traumatic events they had experienced in the past from a

list of 19 specific events [29], and one additional question that

allowed participants to briefly describe any other stressful event.

Participants who reported experiencing more than one traumatic

event were asked to select one event they considered to be the

worst and report the posttraumatic symptoms due to that specific

event. If participants had experienced more than one trauma, they

were also asked symptoms based on a randomly chosen traumatic

event from the remaining traumatic events. Respondents were

considered affected by lifetime PTSD, if all six DSM-IV criteria

were met in reference to either the worst or the random event. The

identification of PTSD obtained from the telephone interview

responses has been validated in a random subsample of 51

participants via in-person clinical interview, which has been

described previously [27,31]. The comparison showed high

internal consistency and concordance.

Additional survey-based variables included in this study were:

demographic variables including race, sex, and age; number of

traumatic events, known to be strongly associated with PTSD [32–

34], which was assessed as a count of the different types of traumatic

events and ranged from 0–19 for each person; whether a participant

had ever smoked, due to the known influence of smoking on DNA

methylation levels [35]; socioeconomic position (SEP); and lifetime

depression, a mental illness frequently comorbid with PTSD [36].

Consistent with the evidence that attainment of more than a high

school education is associated with improved health [37], analyses

were performed with SEP dichotomized according to more than

high school (high SEP) or high school or less (low SEP). Assessment of

the presence/absence of lifetime depression in the DNHS has been

previously reported in detail, and has been validated via clinical in-

person interviews [38].

Genotyping
Samples were genotyped for the SLC6A3 39UTR VNTR using

the primer sets described in Drury et al [19]. Genotyping was

performed on the Mastercycler Pro S thermocycler (Eppendorf,

Hamburg, Germany), using Qiagen�’s Taq PCR Core Kit and

associated protocols. Thermocycling conditions included a 94uC
initial at 2 minutes followed by, 35 cycles of: 94uC denature for

15 seconds, 64uC annealing temperature for 15 seconds and a

72uC extension for 30 seconds; and a final temperature of 72uC for

5 minutes. PCR products were then size fractionated on a 2%

agarose gel stained with ethidium bromide. Allele identification

was based on fragments ranging from 3 repeats to 11 repeats, from

known genotypes and sizes standards described in Michelhaugh et

al [11]. Amplification and analysis was performed at least twice for

each individual.

DNA Methylation Microarray Data
Methylation microarray data analysed in this study were

obtained from the HumanMethylation27 (HM27) DNA BeadChip

(Illumina) as previously described [27]. Bisulfite-converted DNA

samples were subjected to methylation profiling via the Human-
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Methylation27 (HM27) DNA BeadChip (Illumina) following the

manufacturer’s instructions. Methylation levels were determined

for 27,578 CpG dinucleotides spanning 14,495 genes. The

resulting data were background normalized using Bead Studio.

The validation of the methylation microarray data via pyrose-

quencing and DNA sequencing of a subset of individuals tested on

the original microarray were conducted and has been reported in

detail elsewhere [27]. For the purpose of this study, methylation of

SLC6A3 was assessed at two CpG sites represented on the HM27

BeadChip. The first CpG site (cg13202751) occurs approximately

900bp upstream of the SLC6A3 gene within its putative promoter

region. The second CpG site (cg26205131) is located in the first

intron of the SLC6A3 gene, between the upstream 59-UTR and the

downstream start codon (,1.5 kb).

Pyrosequencing Validation
Locus-specific pyrosequencing was conducted to validate the

methylation data at cg13202751. Pyrosequencing assays were

designed and implemented by EpigenDx (Worcester, MA)

following the manufacturer’s recommended protocol. Since the

microarray and the pyrosequencing methylation data were not

normally distributed in our sample, we evaluated the correlation

between the two using the Spearman’s rank order correlation test.

We observed a moderate but significant correlation between the

two variables based on available DNA samples from 69 of the

original 83 individuals tested in the microarray analysis (Spear-

man’s r= 0.31, p = 0.009).

Statistical Analysis
Chi-square tests were performed to verify Hardy-Weinberg

equilibrium. We calculated means with standard deviations for

continuous covariates. For categorical covariates, frequencies and

percents were calculated. Bivariate associations were assessed for

each of the variables of interest and covariates with respect to

lifetime PTSD status. The chi-square test was performed for

categorical variable comparisons; for continuous variable com-

parison, two-sample t-tests were used. SLC6A3 39UTR VNTR

genotypes of 9R/9R and 9R/10R were combined into the ‘9R

carrier’ category due to a small number of individuals with 9R/9R

genotype (n = 15). Logistic regression analysis, adjusting for

potential confounders and known predictors of PTSD, including

age, sex, socio-economic position, race, smoking, number of

traumatic events, and lifetime depression, was used to assess the

main effect of SLC6A3 VNTR polymorphism on the risk of lifetime

PTSD, which was coded as a dichotomous variable. Continuous

variables including age and number of traumatic events were

centered to the mean.

Because the odds ratio estimation in logistic regression could be

unreliable (i.e. overestimated) when sample size is not large, the

exact logistic test was used when analyzing the pilot sample

consisting of those who also had SLC6A3 microarray methylation

data (n = 83) to ensure a valid inference in such situation. The

same covariates as in the genotype analysis plus peripheral blood

mononuclear cell (PBMC) counts (collected as previously described

in [38]), were adjusted for to assess the main and interacting effects

of SLC6A3 genetic and epigenetic variation on lifetime risk of

PTSD. In the exact logistic test, all continuous variables were

dichotomized by the median value except the total number of

PTEs to make the exact test computationally feasible. Due to the

limited variation in the methylation beta-values at cg26205131

(Figure S1), our statistical analysis focused on cg13202751.

Methylation beta-values at cg13202751were dichotomized based

on the median value (median-split; 0.19) to improve the estimation

stability of the logistic regression models. In all analyses, p-values of

less than 0.05 (two-tailed) were considered as evidence of statistical

significance. The analyses were conducted with SAS version 9.2

(SAS Institute, Cary, NC).

Results

Full Analytic Sample
In Table 1, we present the frequencies of all SLC6A3 39-UTR

alleles for all 362 trauma exposed participants. The descriptive

statistics and bivariate results based on the 320 trauma exposed

study participants with either 9R/9R, 9R/10R, or 10R/10R

genotypes are shown in Table 2. The majority of participants

(79.3%) were of African American descent. The lifetime preva-

lence of PTSD in this sample was 19.4%. Compared to individuals

without PTSD, PTSD cases reported significantly greater number

of traumatic events (p , 0.001), were more likely to have ever

smoked (p = 0.02), and were more likely to have met lifetime

criteria of depression (p , 0.001). The SLC6A3 genotype

distribution for participants carrying a 9R or 10R allele did not

depart from Hardy-Weinberg equilibrium (p = 0.15). After adjust-

ing for age, sex, socio-economic status, race, smoking, number of

traumatic events and lifetime depression, 9R allele carriers showed

almost twice the risk of PTSD compared to 10R/10R carriers

(OR = 1.98, 95% CI = 1.02–3.86) (Table 2).

DNA Methylation Subsample
The lifetime prevalence of PTSD in the DNA methylation

subsample was 19.2%. Similar to the full analytic sample,

participants with PTSD in the methylation subsample reported a

significantly greater number of traumatic events (p = 0.001), were

more likely to have ever smoked (p = 0.01), and were marginally

more likely to have met lifetime criteria of depression (p = 0.06)

compared to non-PTSD affected participants. Mean DNA

methylation beta-values at cg13202751 did not differ significantly

by PTSD status (p = 0.56).

In main effect analyses (Table 3), there was no significant evidence

of association between high methylation level at SLC6A3 CpG site

cg13202751 and lifetime PTSD after adjusting for age, sex, socio-

economic position, race, smoking, number of traumatic events,

PBMC counts, and lifetime depression (p = 0.39). However, results

from the exact logistic regression test for lifetime risk of PTSD

indicated a significant SLC6A3 genotype6methylation interaction

(p = 0.008). Specifically, 9R allele carriers showed an increased risk

of lifetime PTSD only in conjunction with high methylation at

cg13202751 located within the SLC6A3 promoter locus.

Table 1. Allele frequencies of SLC6A3 39-UTR VNTR
polymorphism in trauma-exposed participants (n = 362).

Allele Frequency Percent (%)

3R 28 3.93

7R 5 0.70

8R 14 1.97

9R 126 17.70

10R 537 75.42

11R 2 0.28

Missing* 12 –

*6 individuals failed SLC6A3 3-‘UTR VNTR genotyping.
doi:10.1371/journal.pone.0039184.t001
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Discussion

In this work, we have explored how genetic and epigenetic

molecular variation at the SLC6A3 locus shapes risk of PTSD. Our

findings confirm previous work indicating that 9R allele carriers of

the SLC6A3 39UTR VNTR polymorphism show significantly

increased risk of lifetime PTSD compared to 10R/10R genotype

carriers [19–21]. In addition, we provide preliminary, new

evidence that interacting genetic and epigenetic variation at the

SLC6A3 locus shapes risk of PTSD, with participants who carried

9R alleles and possessing high DNA methylation at cg13202751

showing significantly increased risk of the disorder. Although these

preliminary findings await confirmation, we suggest that an

integrated model that simultaneously investigates the interaction

between genetic polymorphisms and epigenetic alterations, as

conducted here, may contribute to a more comprehensive picture

of the complex molecular etiology shaping risk of PTSD.

Our findings have several implications. First, our results provide

indirect support that may help to resolve whether the 9R [11] or

10R SLC6A3 allele is associated with higher transcription levels

[12,14,17]. Given the association between elevated dopamine

levels and posttraumatic symptoms, discussed in the introduction,

our own observation of a significantly increased risk of PTSD in

9R allele carriers suggests that the 9R allele may result in

Table 2. Descriptive statistics and bivariate comparisons of participants with and without lifetime PTSD and effect of SLC6A3
39UTR VNTR polymorphism on risk of lifetime PTSD in the full analytic sample* (n = 320).

Overall trauma exposed
sample (n = 320)

non-PTSD
controls (n = 258)

PTSD cases
(N = 62) Main effect model

Characteristic N % N % N % p-value OR 95% CI of OR p-value

Age** 51.6 15.76 52.19 16.15 61 49.1 0.17 1 0.98 1.02 0.94

Female 186 58.13 146 56.59 40 64.52 0.26 1.52 0.77 2.96 0.23

Low SES 149 46.56 114 44.19 35 56.45 0.08 2.69 1.37 5.3 ,0.01

African American 253 79.31 199 77.43 54 87.1 0.09 1.86 0.74 4.69 0.19

Ever smoke 207 64.69 159 61.63 48 77.42 0.02 2.19 1.01 4.72 0.05

Lifetime depression 76 23.82 43 16.73 33 53.23 ,0.0001 5.55 2.74 11.21 ,0.0001

Number of PTEs** 5.95 3.56 5.42 3.28 8.16 3.83 ,0.0001 1.19 1.08 1.31 ,0.001

SLC6A3 39-UTR VNTR genotype

9R carriers 104 32.5 79 30.62 25 40.32 0.14 1.98 1.02 3.86 0.04

10R/10R 216 67.5 179 69.38 37 59.68 1 (referent group)

SES: socio-economic status; PTEs: potential traumatic events; UTR: untranslated region; VNTR: variable number tandem repeat.
*Full analytic sample includes 320 participants who were trauma exposed and had SLC6A3 39-UTR VNTR polymorphism of either 9R/9R, 9R/10R, or 10R/10R genotypes.
**Variables are presented by mean and standard deviation.
doi:10.1371/journal.pone.0039184.t002

Table 3. Main effects of SLC6A3 39UTR VNTR polymorphism and promoter region methylation and interactive on risk of lifetime
PTSD in the methylation subsample (n = 83).

Adjusted Models Main effect - SLC6A3 VNTR genotype Interaction model

Characteristic OR 95% CI of OR p OR 95% CI of OR p

Age* 0.47 0.08 2.40 0.49 0.29 0.02 2.24 0.35

Female 1.31 0.24 7.37 1.00 1.13 0.14 9.18 1.00

Low SES 3.25 0.73 18.86 0.15 18.19 1.79 .999.99 ,0.01

African American 0.55 0.08 4.10 0.74 0.82 0.08 10.77 1.00

Ever smoke 5.37 0.90 63.32 0.07 11.08 0.86 868.49 0.08

PBMC counts* 0.49 0.10 2.11 0.44 0.72 0.13 3.82 0.92

Number of PTEs { 1.25 1.04 1.54 0.02 1.44 1.10 2.04 ,0.01

Lifetime depression 2.29 0.43 13.11 0.43 2.37 0.35 18.29 0.52

SLC6A3 methylation *,{ 2.34 0.47 13.74 0.39 0.31 0.02 3.14 0.47

SLC6A3 VNTR genotype 1.69 0.34 8.33 0.67 0.05 ,0.001 1.46 0.11

SLC6A3 methylation x genotype interaction – – – – 48.61* 2.73 Infinity ,0.01

SES: socio-economic status; PTEs: potential traumatic events; UTR: untranslated region; VNTR: variable number tandem repeat; PBMC: peripheral blood mononuclear cell
counts.
*Median-split.
{Continuous, centered to the mean.
{Assessed at cg13202751.
doi:10.1371/journal.pone.0039184.t003

SLC6A3 Molecular Variation Predicts Lifetime PTSD

PLoS ONE | www.plosone.org 4 June 2012 | Volume 7 | Issue 6 | e39184



decreased SLC6A3 transcription, although this cannot be deter-

mined with certainty without further functional studies. Second,

our results highlight the importance of considering how molecular

variation, at multiple levels, can shape risk of complex illnesses like

PTSD. Although the relationship between DNA methylation and

gene expression is complex, increased promoter-region DNA

methylation is typically thought to correlate with decreased gene

transcription [39]. Our results identified a significant genotype x

methylation interaction, whereby individuals who have the

‘‘double hit’’ risk factors of both a putatively reduced-function

9R allele and high promoter region SLC6A3 methylation exhibited

significantly elevated risk of PTSD. We speculate that these

individuals are likely to have elevated dopamine levels in the

synaptic cleft that may, in turn, contribute to increased risk of

PTSD, but future work in other independent samples is warranted

to confirm this initial finding.

The study has several strengths. First, compared to prior studies,

this study had a relatively large total sample size. Second, it is the

first study that assessed the effect of the SLC6A3 39 UTR VNTR

variant on the risk of PTSD in a population-based sample, which

reduces potential biases of non-compatibility between cases and

controls compared to clinic-based samples or volunteers. Third, no

prior studies, to our knowledge, have considered the role of DNA

methylation when assessing the involvement of SLC6A3 in PTSD;

similarly, none have considered the joint action of SLC6A3 genetic

and DNA methylation variation on risk of PTSD. This study thus

broadens existing knowledge by identifying the ways in which both

forms of SLC6A3 molecular variation shape the risk of PTSD.

Limitations of our study include a relatively small sample size

with which to test DNA methylation effects on risk of PTSD; we

also note that our results were not corrected for multiple testing in

the methylation subsample analyses. In addition, because there are

few participants with 39UTR VNTR homozygous 9R genotypes,

we were unable to specifically investigate the effects between

homozygous and heterozygous 9R carriers on the risk of PTSD.

Furthermore, we were unable to directly assess the relation

between 9R vs. 10R alleles on SLC6A3 gene expression levels as

the samples tested in this work were not collected in a manner that

preserved RNA. Finally, due to the cross-sectional analysis of

blood specimens and questionnaire data, the temporal relationship

between SLC6A3 methylation differences and PTSD onset remain

unclear. Ongoing work using samples from this same longitudinal

cohort should help to shed light on this issue.

Despite these limitations, results of this study support an

important role for the dopamine transporter in PTSD. Our

findings are in accordance with studies favoring the 9R allele of

the SLC6A3 39UTR VNTR polymorphism as a risk allele for

PTSD compared to the homozygous 10R genotype. In addition,

to the best of our knowledge, we report the first, albeit preliminary,

simultaneous investigation of SLC6A3 genetic and epigenetic

variation on the lifetime risk of PTSD. Individuals had the highest

risk of PTSD when they both carried a 9R allele at the 39UTR

VNTR and had showed hypermethylation at a CpG site located in

the SLC6A3, offering a potential molecular mark of increased risk

for PTSD. Future studies conducted on other, independent

cohorts should help to confirm the generalizability of our findings.

Supporting Information

Figure S1 DNA methylation beta-value distributions of
SLC6A3 at the two CpG sites (cg13202751 and
cg26205131) represented on the HM27 beadchip.

(TIFF)
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