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Abstract

Background: Despite moderate heritability estimates for depression-related

phenotypes, few robust genetic predictors have been identified. Potential expla-

nations for this discrepancy include the use of phenotypic measures taken from

a single time point, rather than integrating information over longer time peri-

ods via multiple assessments, and the possibility that genetic risk is shaped by

multiple loci with small effects. Methods: We developed a 14-year long-term

average depression measure based on 14 years of follow-up in the Nurses’

Health Study (NHS; N = 6989 women). We estimated polygenic scores (PS)

with internal whole-genome scoring (NHS-GWAS-PS). We also constructed PS

by applying two external PS weighting algorithms from independent samples,

one previously shown to predict depression (GAIN-MDD-PS) and another

from the largest genome-wide analysis currently available (PGC-MDD-PS). We

assessed the association of all three PS with our long-term average depression

phenotype using linear, logistic, and quantile regressions. Results: In this study,

the three PS approaches explained at most 0.2% of variance in the long-term

average phenotype. Quantile regressions indicated PS had larger impacts at

higher quantiles of depressive symptoms. Quantile regression coefficients at the

75th percentile were at least 40% larger than at the 25th percentile in all three

polygenic scoring algorithms. The interquartile range comparison suggested the

effects of PS significantly differed at the 25th and 75th percentiles of the long-

term depressive phenotype for the PGC-MDD-PS (P = 0.03), and this differ-

ence also reached borderline statistical significance for the GAIN-MDD-PS

(P = 0.05). Conclusions: Integrating multiple phenotype assessments spanning

14 years and applying different polygenic scoring approaches did not substan-

tially improve genetic prediction of depression. Quantile regressions suggested

the effects of PS may be largest at high quantiles of depressive symptom scores,

presumably among people with additional, unobserved sources of vulnerability

to depression.

Introduction

Depression is a complex disorder adversely affecting

millions of individuals, with enormous social and eco-

nomic costs (WHO 2001). The World Health Organiza-

tion has predicted depression will be the second leading

cause of disability worldwide by 2020 (Murray and Lopez

1996). Despite its public health importance, the biological

mechanisms underlying the depression etiology remain

uncertain.

Studies suggest that genetic factors play an important

role in depression (Duffy et al. 2000), with a meta-ana-
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lyzed heritability estimate from twin studies of 37% (95%

confidence interval [CI], 31–43%) (Sullivan et al. 2000).

However, it has been challenging to replicate previously

identified candidate gene underlying susceptibility to

depression (Lopez-Leon et al. 2008) or explain substantial

variance in the phenotype. Genome-wide association

studies (GWAS) have been unsuccessful in identifying sig-

nificant individual genetic variants either (Sullivan et al.

2009; Lewis et al. 2010; Muglia et al. 2010; Shi et al.

2011; Shyn et al. 2011; Wray et al. 2012; Hek et al. 2013;

Ripke et al. 2013). These negative findings have led to

speculation that depression is particularly heterogeneous

both clinically and etiologically, which could dramatically

reduce statistical power to identify causal loci (Craddock

et al. 2008). In addition, it is often hypothesized that for

complex disorders including major depressive disorders,

each individual risk allele only has low contribution, with

odds ratio typically in the region of 1.05–1.2 (Mitchell

2012). Statistical power may be improved by increasing

sample size, which is not always feasible; by improving

precision of phenotype measurement; or by combining

information from multiple loci such as creating polygenic

scores (PS) or taking into account interactions between

genes or loci, which may effectively increase the magni-

tude of the genetic effects.

Measurement has proven particularly challenging for

depression-related phenotypes. Psychiatric research

emphasizes distinctions between categorical diagnoses

(binary phenotypes) and dimensional symptom measures

(continuous phenotypes) (Maes et al. 1992; Prisciandaro

and Roberts 2009). Because categorical diagnoses better

distinguish individuals with true psychopathology, genetic

determinants might be easier to identify when contrasting

diagnosed cases to healthy controls. However, if the herita-

bility reflects the independent influence of many genes with

small effects, the phenotype is likely to be continuously

distributed and more closely related to symptom-based

measures. If so, using a binary outcome measure dichoto-

mizing a continuous phenotype reduces statistical power

compared to using a dimensional quantitative measure

with the same sample size (Helzer et al. 2006; Kraemer

2007), In general, diagnostic and symptom-based measures

are highly but not perfectly correlated (Radloff 1977).

A second challenge in measuring depression phenotypes

is appropriately defining the time period of assessment.

Genetic risks are carried throughout life, but the pheno-

type manifest at any given moment reflects both stable

genetic contributions and fluctuating, transient contextual

influences. These temporary variations reduce statistical

power to detect genotype–phenotype associations (assum-

ing transient contextual influences are independent of

genetics). Depression phenotypes in genetic association

studies are often assessed at a single time point when

symptom measures are used. A registry-based twin study of

depression suggested ongoing depression is more heritable

than mild or nonrecurring depression using the diagnostic

assessment Diagnostic and Statistical Manual of Mental

Disorders, Third Edition (DSM-III) (Lyons et al. 1998).

Integrating information across repeated assessments over

time should reduce nongenetic variability in the phenotype

and increase power to detect genetic determinants.

Combining information on multiple genetic determi-

nants via polygenic scoring is another promising approach

for explaining variance in complex phenotypes. PS com-

bine information on many genetic variants, each presumed

to have small effects, to predict phenotypes (Purcell et al.

2009). One application of PS combines information on

candidate genes previously identified in the scientific litera-

ture. This pool is likely enriched with true causal loci,

improving overall capacity to predict the phenotype. An

alternative PS approach uses genome-wide data, adopting

an agnostic prior regarding which alleles are causal and

using more liberal P-value thresholds for selecting predic-

tive polymorphisms compared to conventional criterion

for genome-wide significance tests (Purcell et al. 2009).

For some outcomes, it explained substantially more vari-

ance in the phenotype than scores limited to confirmed

genotypes (Evans et al. 2009; Purcell et al. 2009). Demir-

kan et al. (2011) adopted this approach using the Genetic

Association Information Network—Major Depressive Dis-

order (GAIN-MDD) sample to develop a genome-wide PS

that explained up to 1% of the variance in depression.

We aimed to estimate the percentage of variance in a

long-term average depression phenotype among partici-

pants in the Nurses’ Health Study (NHS) that could be

explained by PS using a genome-wide scan in NHS

(NHS-GWAS-PS) or two external PS using weights

derived by Demirkan et al. (GAIN-MDD-PS) or from the

Psychiatric GWAS Consortium—Major Depressive Disor-

der (PGC-MDD-PS). We also briefly considered variance

explained by a PS using candidate genes. On the basis of

prior results from Demirkan’s study, we anticipated that

the PS could explain approximately 1% of the variance in

the depression phenotype.

Material and Methods

Study participants

The NHS is a prospective cohort study of 121,700 U.S.

female registered nurses aged 30–55 years at enrollment

in 1976. Since then, self-administered questionnaires on

medical history and lifestyle characteristics have been

collected biennially. A subcohort of 32,826 women

donated blood samples during 1989–1990. DNA was

extracted from white blood cells using the QIAmpTM
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(Qiagen Inc., Chatsworth, CA) blood protocol and all

samples were processed in the same laboratory. In the

current analyses, we restricted to genetically defined unre-

lated white individuals with information on depression

and genome-wide scan data available from four indepen-

dent GWAS nested in NHS that passed quality control

(QC) procedures (final analytic N = 6989). Details

regarding study design and genotyping QC for each

GWAS were reported elsewhere (Cornelis et al. 2011) and

are summarized in Appendix 1 and Tables S2 and S3.

Phenotype

Different assessments of depressive disorder or symptoms

were collected in successive questionnaire cycles from

1992 to 2006 (Table S1), including standard symptom

measures (e.g., CES-D [Center for Epidemiologic Studies

Depression Scale]) and reports of antidepressant use or

doctor-diagnosed depression. To combine information on

depression across multiple sources of information over

14 years of follow-up, we derived a standardized compos-

ite depression score for each questionnaire cycle. We

scaled depression measures at each wave to the Geriatric

Depression Scale (GDS) administered in 2008, a depres-

sion symptom screening tool well-validated in the elderly

(Sheikh and Yesavage 1986; Sharp and Lipsky 2002). We

then used these scores to derive a 14-year long-term

depression score representing average depression scores

across all available questionnaire cycles through 2006 (up

to seven waves). This phenotype captures more accurately

both level and chronicity of depressive experience over

time. More detailed description of the derivation of this

measure is provided in Appendix 2.

To closely parallel previous study in GAIN-MDD by

Demirkan et al. (2011), we also considered a dichotomized

phenotype with the 14-year long-term depression score

when applying GAIN-MDD-PS. To determine an appropri-

ate cut-point, we dichotomized at the 89th percentile,

which best corresponded to the cut-point of the CESD-10

symptom measure of depression (CESD-10 score ≥10) that
is known to have optimal sensitivity and specificity for a

major depressive disorder diagnosis (Andresen et al. 1994).

A secondary analysis was also performed, comparing the

long-term average depression score of individuals in the

extremes: the lowest quartile versus the top 11th percentile.

In addition, we conducted another GWAS agnostic PS

analysis using a second training set, a nine-GWAS-sample

meta-analysis (which includes the GAIN sample) from

the Psychiatric Genomics Consortium (PGC), which has

been pruned to remove single-nucleotide polymorphisms

(SNPs) in high linkage disequilibrium, and applied the

weights and P-values in the PGC training set to the NHS

samples. Similar to the procedure above, we first fit the

continuous long-term composite depression score, then

the dichotomous phenotype because the depression was

originally analyzed as a dichotomous outcome in the

PGC study.

Genotyping and imputation

Exact QC protocols varied slightly by sample set (Tables

S2 and S3). Individuals with genotyping completion or

SNPs with call rates below 90% were excluded. Analyses

based on principal components (Price et al. 2006) were

conducted to assess race; any self-reported “white” sam-

ples that had substantial similarity to non-European refer-

ence samples were excluded. After QC, each study

imputed to ~2.5 million autosomal SNPs with NCBI

build 36 of Phase II HapMap CEU data (release 22) as

the reference panel using MaCH (Li et al. 2010) to

account for the different genotyping platforms and the

SNPs that failed to meet the QC criteria.

Statistical analyses

Validation of the long-term average depression
phenotype

We assessed construct validity by examining the associa-

tion between the 14-year depression measure and estab-

lished correlates of depression available in our sample:

cigarette smoking (pack-years), physical activity (Mets per

week), household characteristics, and phobic anxiety scale.

We expected depression to be associated with greater like-

lihood of smoking, less physical activity, lower occupa-

tional and socioeconomic status, and higher degree of

phobic anxiety. Details are described in Appendix 2.

Traditional GWAS

Genome-wide association analyses were first conducted

separately for each NHS GWA substudies. A linear regres-

sion (using ProbABEL; Aulchenko et al. 2010) was per-

formed on the long-term average depression score

assuming additive genetic model, adjusting for age, disease

status, and the top three or four principal components-

derived eigenvectors to address residual population strati-

fication (depending on the sample, as detailed in the Table

S2). SNPs with minor allele frequency less than 2% or

imputation quality of R2 less than 0.5 were excluded on a

per-substudy basis. Meta-analysis using the METAL pro-

gram was performed for each SNP across four NHS GWA

substudies, combining allelic effects with inverse variance

weighting (Willer et al. 2010). We used a genome-wide

significance threshold P < 5 9 10�8. Our sample provides

80% power to detect a genetic effect size of 0.1
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(corresponding to R2 of 0.006) with minor allele fre-

quency of 0.15, under an additive genetic model.

Agnostic genome-wide polygenic scoring in NHS
(NHS-GWAS-PS)

Genome-wide PS based on agnostic priors can provide a

genetic risk score even when few of the causal genetic loci

have been consistently identified in the literature. Follow-

ing previously established methods, we first restricted to

1,584,339 SNPs with high imputation quality (R2 > 0.95)

that were available across all four NHS GWA substudies.

We next used the PLINK pruning procedure (200-SNP

sliding window, pairwise r2 threshold of 0.25, and succes-

sive shift forward by five SNPs) to remove redundant

SNPs, leaving a total of 97,883 independent SNPs.

Next, we performed a cross-validation procedure to

obtain an unbiased estimate of the prediction performance.

In the PS calculations, each time we used three of the four

NHS GWA substudies as the “training” set to construct a

polygenic risk score, which was then tested in the one

remaining subsample (“testing” set). The procedure was

conducted in three steps: (1) SNP-depression associations

(beta weights) were first extracted from each of the three

substudies in the training set. For each SNP, beta weights

and P-values were meta-analyzed across the three substud-

ies in the training set with GWAMA using inverse variance

weights (Magi and Morris 2010); (2) the PS for each

woman in the testing set was calculated as the sum of the

number of risk alleles she carried at each locus meeting the

selected P-value threshold, weighted by the meta-analyzed

beta weight from the training set; and (3) we considered

nine prespecified P-value thresholds in the training set for

selecting SNPs to be included, ranging from 10�5 to 0.5

(Ptraining). Alternatively, we also examined Ptraining thresh-

olds with nonoverlapping ranges (10�5 < P < 10�4 to

0.4 < P < 0.5) to assess whether any of these finer thresh-

old groups explained more variance in depression. These

PS were calculated using PLINK’s SNP scoring routine.

The cross-validation procedure was repeated four times,

rotating the testing set each time (a “leave-one-out” proce-

dure).

Genome-wide polygenic scoring from two
external studies—GAIN-MDD (GAIN-MDD-PS) and
PGC-MDD (PGC-MDD-PS)

In addition, we attempted to replicate the published find-

ing by Demirkan et al. (2011). Through personal commu-

nication, Demirkan and colleagues provided the precise

beta weights and P-values derived from their discovery set

to facilitate replication in our cohorts. We also sought

replication using data from another nine-study

meta-analysis, which has been recently published (Ripke

et al. 2013). We again considered the same nine P-value

thresholds described above for selecting SNPs to be

included in the PS calculation. The PS analysis was indi-

vidually performed in each of the four NHS substudies

and was meta-analyzed in the end.

Candidate gene polygenic scoring in NHS
(candidate-PS)

Some investigators have suggested that the candidate gene

approach is less likely to yield true causal loci, with most

positive results arising by chance. In that case, a candidate

gene approach to PS may exacerbate the difficulty of such

efforts. However, given the significant literature on candi-

date genes, the ongoing controversies regarding which

genes matter, and the substantial research attention they

have received, the candidate gene polygenic scoring in

NHS was also conducted and is described in detail in the

Data S1. Briefly, to develop an informed candidate-PS, we

selected 17 candidate genes with at least two positive

prior reports of involvement in depression on the Pub-

Med via the HuGE Navigator (Yu et al. 2008) as of May

2011. Ultimately 96 independent SNPs were reserved for

analysis, and each candidate gene was represented by at

least one SNP. We used the same cross-validation proce-

dure to obtain an unbiased estimate of the prediction

performance as described above.

Analyses of associations between PS and
depression phenotypes

Assessments of the association between PS and depression

phenotype were performed in R with linear (for continuous

outcome) or logistic (for dichotomized outcome) regres-

sions. Covariates included in all PS analyses were the same

as in the SNP GWAS analysis: age, case–control status in
each original GWAS, and the three or four eigenvectors.

We further performed quantile regression models in the

best prediction model of each approach defined by the sig-

nificance level (NHS-GWAS-PS: P < 0.2; GAIN-MDD-PS:

P < 0.001; and PGC-MDD-PS: P < 0.2) to assess whether

the effects of PS were larger at high levels of depression

scores. Unlike linear regression models, which assess

whether the mean value of the phenotype differs by PS level

(the mean model), quantile regression models assess

whether a specific percentile, for example, the median,

differs by PS. Quantile regression was performed in the

Statistical Analysis Systems software package, version 9.3

(SAS Institute, Inc., Cary, NC). Coefficients for each decile

in each of the four GWA substudies were estimated and

then meta-analyzed (with inverse variance weighting). We

bootstrapped (5000 replications) to test the association
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between each of the three PS approaches and the interquar-

tile range for the depression measure. A P-value <0.05 was

considered a significant association with depression scores

in quantile regressions.

Results

Initial analyses

The 14-year long-term average depression score of 6989

women in the study had a mean of 1.83 with standard

deviation (SD) of 0.65, consistent with that in the full

NHS cohort. The analytic sample did not appreciably dif-

fer from the larger cohort across a range of demographic

and other sample attributes (Table 1).

The Cronbach’s alpha for the seven-wave depression

score was 0.83, suggesting these depression assessments

measure a unified underlying attribute. In the full NHS

cohort (N = 106,020), the long-term average depression

score was significantly positively associated with cigarette

smoking and negatively associated with physical activity

(both P’s for trend <0.0001). The association between BMI

and depression score was U-shaped (P < 0.0001), such

that both underweight and overweight women had higher

depression scores than normal-weight women (Fig. 1).

Meta-analyzed genome-wide SNP
associations

The genomic inflation factor (lambda) for each substudy

ranged between 1.00 and 1.01. The QQ-plot (Fig. 2) indi-

cated good adherence of observed meta-analyzed P-values

to the line of expectance, suggesting little evidence of

systematic genotyping error. No individual SNPs reached

the conventional genome-wide significance threshold of

5 9 10�8 for the association with long-term average

depression score (Fig. 3). The SNP with the lowest P-

value was rs6763048 (P = 8.42 9 10�7), mapping to an

intron of SCN5A on chromosome 3. A total of 14 SNPs

had P-values <1 9 10�5, corresponding to eight indepen-

dent SNPs (r2 < 0.05 in 500 kb) (Table 2).

NHS-GWAS-PS analyses

The genome-wide PS similarly explained a small fraction

of variance in the long-term average depression score

(Table 3). Using the most liberal threshold of P < 0.5 to

select SNPs in the training set, the genome-wide PS was

associated with the depression score in the testing set

(P = 0.004), but explained only 0.1% of the variance. The

maximum percentage of variance explained was achieved

with slightly more conservative P-value thresholds for

SNP selection (at P < 0.3), in which the genome-wide PS

explained 0.2% of the variance (P = 0.003). When

restricted to nonoverlapping Ptraining threshold ranges, the

SNPs with the most significant association were those

with Ptraining between 0.1 and 0.2; this group alone com-

prised nearly 9900 SNPs, but explained 0.1% of pheno-

type variation (Table 3).

GAIN-MDD-PS and PGC-MDD-PS analyses

Regardless of the P-value threshold chosen, the GAIN-

MDD-PS was not significantly associated with either the

continuous or dichotomized depression phenotype in the

NHS sample (Table 4). The maximal proportion

explained by genome-wide PS comparing women at the

extremes of the phenotype was higher than that in the full

Table 1. Characteristics of NHS full sample versus genetic study par-

ticipants.

Characteristics

Full NHS

sample

Genotyped

sample

Sample size 121,701 6989

Age in 1992, mean (SD) 59.03 (7.28) 60.19 (6.72)

BMI in 1992, mean (SD) 26.22 (5.12) 26.70 (5.38)

Pack-year smoking in 1992,

mean (SD)

13.54 (19.76) 13.26 (19.68)

Total activity in 1992 (Mets/week),

mean (SD)

18.85 (23.18) 19.12 (21.74)

Age at blood draw, mean (SD) — 57.79 (6.76)

Self-described Caucasian, N (%) 98,376 (94.5) 6797 (97.46)

Marital status in 1992, N (%)

Married 72,454 (81.24) 5677 (82.78)

Widowed 9289 (10.42) 737 (10.75)

Divorced/separated 7416 (8.32) 439 (6.4)

Education, N (%)

RN 62,673 (70.49) 4805 (70.21)

Bachelor degree 17,675 (19.88) 1369 (20.0)

Master degree 7726 (8.69) 609 (8.9)

Doctoral degree 834 (0.94) 61 (0.89)

Husband’s highest education level, N (%)

<High school graduate 4743 (6.34) 337 (5.66)

High school graduate 29,868 (39.92) 2408 (40.44)

College graduate 21,974 (29.37) 1686 (28.31)

Graduate school 18,242 (24.38) 1524 (25.59)

Father’s occupation when participants were 16 years old, N (%)

Blue collar 56,676 (51.66) 3071 (49.03)

White collar 42,788 (39.0) 2490 (39.76)

Farmer 10,248 (9.34) 702 (11.21)

14-year average depression score,

mean (SD)

1.84 (0.62) 1.83 (0.65)

Missing 14-year average depression

score, N

15,679 0

CESD-10 score, mean (SD) 5.72 (4.15) 5.76 (4.11)

Missing CESD-10 score, N 47,804 1093

CESD-10 ≥10, % 12.23 11.89

NHS, Nurses’ Health Study; CESD, Center for Epidemiologic Studies

Depression Scale—10 items.
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sample (0.4% vs. 0.1%); however, it was not statistically

significant, likely due to the reduction in sample size

when using only individuals with extreme values of the

phenotype (n = 2920) (data not shown).

When applying the agnostic PS from a nine-study meta-

analysis of PGC-MDD, the genome-wide risk scores derived

from SNPs with less stringent Ptraining threshold were signif-

icantly associated with the continuous long-term depressive

score, but they only explained at most 0.1% of variance in

phenotype. The Nagelkerke’s R2 was also at most 0.1%

when the depression phenotype was modeled dichoto-

mously without the statistical significance (Table 5).

Candidate-PS analyses

Three individual SNPs (rs36011, rs1417584, and

rs6917735) showed nominally significant associations at a

threshold of 0.05, but none remained significant after

Bonferroni correction. Overall, the candidate-PS explained

a small fraction of the variance in the long-term average

depression scores in the NHS leave-one-out meta-analysis

(see Data S1).

Quantile regression analyses

The quantile regression suggested a modest increase in PS

effect on depression score in higher quantiles than in

lower quantiles (Fig. 4). The pseudo-R2 increased more

than 40% in the 75th percentile quantile regression model

compared to that in the 25th percentile model in all three

PS approaches. The interquartile range comparison sug-

gested the effects of PS significantly differed at the 25th

and 75th percentiles of the long-term depressive pheno-

type for the PGC-MDD-PS (P = 0.03) (pseudo R2 chan-
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Figure 1. Distributions of behaviors and BMI in relation to the 14-year long-term average composite depression phenotype in the full NHS cohort

(N = 106,020). BMI, body mass index; NHS, Nurses’ Health Study.
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ged from 0.1% at the 25th percentile to 0.3% at the 75th

percentile), and this difference was at borderline statistical

significance for the GAIN-MDD-PS (P = 0.05). The result

of candidate gene polygenic scoring could be found in the

Table S5.

Discussion

In this sample of 6989 women, we did not identify any

SNPs significantly associated with a 14-year average

composite depression phenotype using either candidate

gene-based or conventional GWAS analyses. With the two

approaches that developed PS (NHS-GWAS-PS and PGC-

MDD-PS), we achieved nominal statistical significance,

but never explained more than 0.2% of the phenotypic

variance. While the PS analyses indicated that SNPs with

P-values above conventional significance thresholds may

contribute to the association, the proportion of variance

explained was much smaller than that reported in a prior

study (0.2% vs. 1%) (Demirkan et al. 2011). Further-

more, the GAIN-MDD-PS did not predict depression in

our mean model analyses. The quantile regression results

suggested modestly larger effects of PS on high- versus

low- depression quantiles, but even at high depression

quantiles (e.g., 75% percentile), the PS explained at most

0.3% of phenotype variance.

Our findings are in line with the literature in which no

locus surpassed genome-wide significance in relation to

depression (Sullivan et al. 2009; Lewis et al. 2010; Muglia

et al. 2010; Shi et al. 2011; Shyn et al. 2011; Wray et al.

2012; Hek et al. 2013; Ripke et al. 2013). Of note is that

in a largest GWAS of psychiatric illness to date (with N

over 60,000), the PGC Cross-Disorder Group identified

SNPs at four loci that were significantly associated with a

cross-disorder phenotype as identified by meta-analyzing

across five childhood-onset and adult-onset psychiatric

disorders including major depressive disorder, bipolar

disorder, schizophrenia, autism spectrum disorders, and

ADHD, and using a goodness-of-fit model-selection pro-

cedure (Cross-Disorder Group of the Psychiatric Genom-

ics Consortium 2013). Findings suggest the potential for

shared genetics between these psychiatric disorders. How-

ever, because the heritability estimate of depression alone
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is modest, attempts to identify disease-specific susceptibil-

ity loci are expected to be challenging. Moreover, associa-

tions derived from twin studies include heritability

directly attributable to genes and to gene by shared

environment interactions. As a result, inability to identify

relevant environments and gene–environment interactions

is likely to reduce success when searching for depression

susceptible genes. It is further possible that relevant

genetic factors are due to private or rare mutations not

captured by GWAS chips or expression variations such as

epigenetics; this could also explain why our PS explained

little variation in the depression phenotype.

Consistent with previous research, our findings sug-

gest each common genetic variant of depression has a

very small effect and therefore is difficult to detect. We

anticipated that the aggregate risk combining informa-

tion on multiple loci would strengthen our explanatory

capacity. This was supported in that the PS significantly

predicted long-term average depression score, but the

improvement was an order of magnitude smaller than

necessary to explain the missing heritability. The limited

explanatory power of the genome-wide PS should be

interpreted cautiously because such agnostic PS are

likely composed primarily of false positives. Thus, the

genome-wide PS may include a few true causal loci

plus thousands of unrelated loci; adding substantial

noise to any causal variable will inevitably reduce its

correlation with the outcome. The explanatory power of

Table 3. Meta-analysis of percentage of variance explained in depression phenotype in NHS by the genome-wide agnostic polygenic scores in the

leave-one-substudy-out analysis (N = 6989).

Cumulative P-value thresholds for selecting SNPs Nonoverlapping P-value thresholds for selecting SNPs

Ptraining
1 threshold Percentage of variance explained P-value Ptraining

1 threshold Percentage of variance explained P-value

p<0.00001 0.1 0.355 0–0.00001 0.1 0.355

p<0.0001 0 0.528 0.00001–0.0001 0 0.944

p<0.001 0.2 0.159 0.0001–0.001 0.2 0.118

p<0.01 0.1 0.524 0.001–0.01 0.1 0.977

p<0.1 0.1 0.043 0.01–0.1 0.1 0.013

p<0.2 0.1 0.002 0.1–0.2 0.1 0.003

p<0.3 0.2 0.003 0.2–0.3 0.1 0.832

p<0.4 0.1 0.002 0.3–0.4 0.1 0.269

p<0.5 0.1 0.004 0.4–0.5 0 0.996

NHS, Nurses’ Health Study; SNP, single-nucleotide polymorphism.
1

Training set: remaining three NHS substudies except the testing sample.

Table 2. Meta-analysis GWAS results of 14-year long-term average composite depression measure of top findings (P < 10�5) in four NHS sub-

studies (N = 6989).

SNP Chr Position

Allele 1/

Allele 2

Allele 1

frequency Closest gene

Approx.

distance (kb) Effect

Standard

error P-value

rs6763048 3 38656398 A/G 0.858 SCN5A Intron �0.076 0.016 8.42E-07

rs93239021 14 93641863 T/G 0.257 IFI27L1 3 �0.063 0.013 2.43E-06

rs108734471 14 93642502 A/T 0.748 IFI27L1 3.6 0.063 0.014 2.71E-06

rs4366580 13 22333062 T/C 0.200 IPMKP1 23 �0.062 0.013 3.90E-06

rs10512653 5 36474011 T/C 0.150 RANBP3L 136 0.069 0.015 4.08E-06

rs2529282 5 5564990 A/G 0.345 KIAA0947 21 0.052 0.011 4.43E-06

rs17287770 3 46629429 C/G 0.928 LOC100132146 �0.096 0.021 5.69E-06

rs26198552 5 5557842 T/C 0.653 KIAA0947 14 �0.051 0.011 7.40E-06

rs4266492 6 40803132 A/C 0.950 LRFN2 139 0.137 0.031 7.56E-06

rs7182961 15 60707884 C/G 0.749 TLN2 19 0.057 0.013 7.70E-06

rs2529302 5 5562703 A/C 0.339 KIAA0947 19 0.051 0.011 8.15E-06

rs2529292 5 5563450 T/C 0.339 KIAA0947 20 0.051 0.011 9.13E-06

rs26527152 5 5567517 A/G 0.659 KIAA0947 24 �0.051 0.011 9.16E-06

rs25785142 5 5574830 A/G 0.651 KIAA0947 31 �0.050 0.011 9.81E-06

GWAS, genome-wide association studies; NHS, Nurses’ Health Study; SNP, single-nucleotide polymorphism.
1SNPs in linkage disequilibrium with each other (r2 > 0.8) on chromosome 14.
2

SNPs in linkage disequilibrium with each other (r2 > 0.8) on chromosome 5.
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the genome-wide PS is likely to increase with larger

sample sizes, as the ratio of true to false positives

improves.

We also improved on prior GWA studies by using a

dimensional phenotype summarizing depressive symptoms

over 14 years. The literature suggests the etiology of

depression involves multiple genes each with small effect,

thus the relevant phenotype is likely to be normally

distributed. In addition, the long-term average score is

enhanced by virtue of having both valid symptom

measures (Radloff 1977; Silveira et al. 2005) and direct

information about depression diagnoses. This phenotype

should be less influenced by transient environmental fac-

tors and therefore more strongly related to stable genetic

predispositions. The enhanced phenotype was not strongly

predicted by the PS, however, suggesting the use of cross-

sectional depression phenotypes is not the critical barrier

to identifying genetic determinants. On the other hand, as

depression is suspected to be a heterogeneous phenotype,

in which individual patients may have a wide range of

clinical manifestations and simultaneously develop comor-

bid disorders, identifying a depression-related phenotype

which captures more homogeneous clinical features may

be critical for identifying the underlying genetic architec-

ture. Prior research has attempted to index plausible

sources of phenotypic heterogeneity in the depression

cases by stratifying analyses by gender, recurrence, age of

onset, or typicality, but such efforts have not yielded sta-

tistically significant findings. This study only included

female subjects, and incorporated depression-related phe-

notype information collected multiple times across

14 years; as a result our phenotype may capture a more

chronic attribute or experience. However, age of onset was

not available in this study and the cases had a mixture of

symptom severity. The possible phenotypic heterogeneity,

if likely linked to genetic heterogeneity, could reduce sta-

tistical power to detect association signals.

We found heterogeneous PS effects across quantiles of

depression, consistent with the hypothesis that some loci

have worse effects on individuals with other types of

environmental or genetic vulnerability (Williams 2012).

Because we use a genome-wide PS, environmental factors

such as adverse life events or lack of social support seem

most likely. The larger effect of PS on high- versus low-

depression quantiles may support the hypothesis that the

“missing heritability” is attributable to epistatic or envi-

ronmental interactions, such that some genotypes are

relevant only in the context of other risk factors. Nearly

all twin studies rely on twins raised together; in such

studies, the variance attributable to shared environmental

factors modifying genetic effects is implicitly included in

heritability estimates (Kamin and Goldberger 2002). Gatz

et al. (1992) found little additive genetic variance among

twin pairs reared apart, suggesting the likely importance

of environment and gene–environment interactions.

Alternatively, heterogeneous PS effects across quantiles of

Table 4. Meta-analysis of percentage of variance explained in depres-

sion phenotype in NHS by the genetic risk scores using external GAIN-

MDD sample as the training set (N = 6989).

Outcome in NHS testing set

Continuous

depression score

Dichotomous

depression status

Ptraining threshold R2%1 P-value1 R2%1,2 P-value1

p<0.00001 — — — —

p<0.0001 0.1 0.807 0.1 0.697

p<0.001 0.1 0.203 0.2 0.450

p<0.01 0 0.866 0 0.775

p<0.1 0 0.922 0.1 0.520

p<0.2 0 0.581 0 0.863

p<0.3 0 0.394 0.1 0.903

p<0.4 0 0.300 0.1 0.651

p<0.5 0.1 0.344 0.1 0.653

GWAS, genome-wide association studies; GAIN-MDD, Genetic Associ-

ation Information Network—Major Depressive Disorder; NHS, Nurses’

Health Study.
1Use the GWAS result from GAIN-MDD as the training set, and use

each of the four NHS substudies as the testing set on recurrent com-

posite depression score. The final weighted R2 and P-value calculated

meta-analytically across four NHS substudies.
2Denotes Nagelkerke’s R2%.

Table 5. Meta-analysis of percentage of variance explained in depres-

sion symptoms in NHS by the genetic risk scores using external PGC-

MDD sample as the training set (N = 6989).

Outcome in NHS testing set

Continuous

depression score

Dichotomous

depression status

Ptraining threshold R2%1 P-value1 R2%1,2 P-value1

p<0.00001 0 0.445 0.1 0.951

p<0.0001 0.1 0.192 0.1 0.309

p<0.001 0 0.644 0.1 0.291

p<0.01 0 0.240 0 0.639

p<0.1 0.1 0.078 0.1 0.309

p<0.2 0.1 0.030 0.1 0.263

p<0.3 0.1 0.049 0.1 0.46

p<0.4 0.1 0.041 0.1 0.415

p<0.5 0.1 0.031 0.1 0.313

GWAS, genome-wide association studies; PGC-MDD, Psychiatric

GWAS Consortium—Major Depressive Disorder; NHS, Nurses’ Health

Study.
1Use the nine-study meta-analyzed GWAS result from PGC-MDD as the

training set, and use each of the four NHS substudies as the testing set

on long-term composite depression score. The final weighted R2 and P-

value calculated meta-analytically across four NHS substudies.
2Denotes Nagelkerke’s R2%.
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Figure 4. Quantile plot of polygenic scores (PS) on 14-year long-term average composite depression phenotype.
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the phenotype might represent noninterval scaling of the

phenotype or modeling error. Regardless of whether the

result is interpreted as evidence for gene–environment

interactions, the finding of heterogeneous effect sizes indi-

cates that mean effects estimated in linear regression

model may understate the overall impact of genetic risk.

Potential limitations of our study include generalizabil-

ity of the NHS blood sample, imprecision in depression

assessment, and different GWA platforms available in

each subcohort. Combing multiple GWAS results across

cohorts with different genotyping platforms and QC fil-

ters is now common when studying the genetics of com-

plex diseases such as depression and schizophrenia,

because large sample sizes are necessary (Schizophrenia

Psychiatric Genome-Wide Association Study Consortium

2011; Hek et al. 2013). The QC has been carefully and

extensively examined internally, and the allele frequencies

are similar across NHS subcohorts.

In summary, combining longitudinal phenotype assess-

ments from multiple measurements and different poly-

genic scoring approaches did not substantially improve

genetic prediction of depression. Common SNPs

explained 0.2% or less of depression variance via poly-

genic scoring analysis. Many studies now suggest depres-

sion does not result from either purely genetic or

environmental influences, but rather from the intersection

of the two (Dunn et al. 2011). Because both components

are intertwined, the underlying association could be

obscured if either factor is neglected, especially when the

environments differ widely between samples. Identifying

social or environmental modifiers of genetic risks is a

critical next step to understand depression etiology.
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Table S3. Sample quality control.

Table S4. Percentage of variance* in depression pheno-

types explained by variables associated with depression in

the NHS full cohort, restricting to women with nonmiss-

ing 2004 CESD-10 and 14-year long-term average depres-

sion scores (N = 73,897).

Table S5. Meta-analysis of percentage of variance

explained in depression phenotype in NHS by the candi-

date gene polygenic scores in the leave-one-substudy-out

analysis (N = 6989).

Appendix 1

Nested Genetic Case–Control Studies in NHS

Participants for the current analyses were from four inde-

pendent GWAS nested in the NHS initially designed to

study outcomes of breast cancer (BrCa, N = 2280), coro-

nary heart disease (CHD, N = 1135), type 2 diabetes

(T2D, N = 3084), and kidney stone (KS, N = 490) dis-

ease. Both cases and controls in each original GWAS were

included for analysis.

Briefly, for the NHS BrCa study, cases and controls were

limited to postmenopausal women. Controls were matched

with cases by age and postmenopausal hormone use at

blood draw. For the NHS CHD study, controls were ran-

domly selected from the subcohort who provided blood

samples and did not experience CHD with two controls for

each case, matched with cases by age, smoking, and month

of blood draw. For the NHS T2D study, controls who were

defined to be those free of diabetes at the time the case was

reported were matched on year of birth, month of blood

collection, and fasting status. For the NHS KS study, partic-

ipants with a history of kidney stones were matched to ran-

domly selected controls identified in two cycles from those

with no history of cancer (cycles 1 and 2) or cardiovascular

disease (cycle 1) who met age eligibility requirements (cycle

1: <66; cycle 2: <76). A total of 2280 women from the NHS

BrCa substudy, 1135 women from the CHD substudy, 3084

women from the T2D, and 490 women in the KS substudy,

all unrelated and genetically defined whites who had non-

missing phenotype and covariate data, were included in this

study (total N = 6989).

Appendix 2

Construction of a 14-Year Long-Term
Average Depression Measure

The Nurses’ Health Study (NHS) began collecting depres-

sion-related measures starting in 1992. Information on

clinical and subclinical levels of depression has been

assessed with a variety of measures across seven subsequent

interview waves. For example, information on clinician-

diagnosed depression has been assessed every 2 years since

2000, and information on antidepressant use has been col-

lected every 2 years since 1996. Questionnaire-based mea-

sures with relevant symptom items were also administered,

including the SF-36, Center for Epidemiologic Studies

Depression Scale—10 items (CESD-10), life orientation

test, and geriatric depression scale—15 items (GDS-15).

These have been assessed either once or at multiple points

(Table S1). For the construction of a 14-year long-term

average phenotype, all assessments were scaled against a

common anchor score to make it possible to combine mea-

sures across waves. The GDS, assessed in 2008, has excellent

psychometric characteristics within the age span of our

population, has good validity as a continuous dimensional

measure of depressive symptomology, and good sensitivity

and specificity for clinical depression when dichotomized

(Sheikh and Yesavage 1986). We therefore chose the GDS

as our “anchor” assessment and scaled all other assessments

against the GDS. We chose GDS-15 over CESD-10 because

it was specifically developed for use in geriatric population

(the mean age of NHS participants were both over 70 years

old when either instrument was examined), it contained

fewer somatic items. In cognitively intact patients older

than 65 years, the GDS screen is the preferred instrument

because the psychometric data on the CES-D are mixed in

this population (Sharp and Lipsky 2002). Although the

quality of the available measures used across waves differs,

our approach down-weights those instruments that do not

correspond well with the GDS. Our protocol was as follows:

using all NHS women with GDS scores (regardless of the

availability of genetic data), we regressed the GDS score on

all depression-related measures available in that wave, using

a linear regression model. For example, using all measures

of the depression phenotype available in 2004, we estimated

the following linear regression:

EðGDS2008Þ¼b0þb1�Diagnosis2004þb2�Meds2004

þb3�CESD-102004þb4
�LifeOrientation2004þb5
�Sad2PlusWeeks2004

(1)

On the basis of this linear regression, we predicted the

value that the GDS score would have taken if it has been

assessed in 2004. We estimated similar models for each

interview wave, 1992–2006. For instruments with missing

data on a few items, we used the average of nonmissing

items if at least half of the items were reported and a

missing indicator method for observations missing more

than half of the items.
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In a second step, we used the regression coefficients from

the initial models to predict the value of GDS for each par-

ticipant at each wave, had he or she been given the GDS. In

this way, all individual depression measures collected at

one wave were rescaled and translated to a single common

scale (GDS-standardized score) for each participant, and

these estimates could be obtained even for individuals who

did not complete the GDS in 2008. The final phenotype

was the average of the rescaled depression scores from all

available questionnaire cycles (up to seven waves):

14-Year Long-Term Average Composite Depression

Phenotype¼
�X7

i¼1

½EðGDS� 15Þjdepression measure

inwave i�
��

number of waves

(2)

This approach maximized the available sample size

and optimized the information available on lifetime

experiences of depression, because anyone with at least

one wave of information with depression assessment

was included. We also believe it decreased the transient

component of the measure compared to using a single-

wave assessment, which would strengthen our ability to

detect genetic predictors. In fact, in our analytic sample

132 (1.9%) women had only one measure of depres-

sion, 136 (1.9%) had two measures, and 6721 (96.2%)

had three or more measures, in which 5256 (78%) had

complete data collection of depression measures in all

waves.

We assessed reliability and validity of the 14-year

long-term average composite depression phenotype in

the full NHS sample. First, we examined the correlation

of the standardized measures across waves with a com-

monly used measure of depressive symptoms, the

CESD-10 assessed at a single-wave in 2004. For the

73,897 women with both CESD-10 and the 14-year

average depression measure, the Pearson correlation

coefficient was 0.74. This high but not perfect correla-

tion suggests that the 14-year average phenotype may

have more information in it. We assessed construct

validity by examining the association between the 14-

year composite measure and established correlates of

depression: cigarette smoking (pack-years) and physical

activity (Mets per week), assessed by self-report in

2004; paternal occupation when participants were

16 years old in 1976, husband’s education as a measure

of socioeconomic status assessed in 1992, and the aver-

age of phobic anxiety scale of the Crown Crisp Experi-

mental Index (CCI) between 1988 and 2004. We

expected the new 14-year average depression score to

be associated with greater likelihood of smoking, less

physical activity, and lower occupational and socioeco-

nomic status (Table 1). We also anticipated that 14-year

average depression would be more correlated with these

factors than a depressive symptom measure at any sin-

gle time point.

The mean (SD) of the new 14-year average composite

depression score in women with depression defined by

CESD-10 was 2.68 (0.68), significantly higher than those

without elevated CESD-10 scores (mean = 1.66,

SD = 0.47, t-test P-value <0.0001). As expected, cigarette

smoking, physical activity, and household characteristics

including husband’s highest education and paternal occu-

pation when participants were 16 years old, and phobic

anxiety scale in CCI all explained slightly more variance

in our 14-year average depression score than they

explained for the 2004 CESD-10 score (Table S4). This

result again suggests that the 14-year average depression

measure captures more information about a stable pheno-

type than the single-wave measure alone.
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