

NIH Public Access

Author Manuscript

Neuropharmacology. Author manuscript; available in PMC 2013 February 1.

Published in final edited form as:

Neuropharmacology. 2012 February ; 62(2): 647–653. doi:10.1016/j.neuropharm.2011.03.012.

Twin Studies of Posttraumatic Stress Disorder: Differentiating Vulnerability Factors from Sequelae

William S. Kremen^{a,b,c,*}, Karestan C. Koenen^d, Niloofar Afari^{a,c}, and Michael J. Lyons^e

^a Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093 USA

^b Center for Behavioral Genomics, University of California, San Diego, La Jolla, CA 92093 USA

 $^{\rm c}$ VA San Diego Healthcare System and VA Center of Excellence for Stress and Mental Health, La Jolla CA 92093 USA

^d Departments of Society, Human Development, and Health and Epidemiology, Harvard School of Public Health, Boston, MA 02115 USA

^e Department of Psychology, Boston University, Boston MA 02215 USA

Abstract

Posttraumatic stress disorder (PTSD) is defined by one's response to an environmental event. However, genetic factors are important in determining people's response to that event, and even their likelihood of being exposed to particular traumatic events in the first place. Classical twin designs can decompose genetic and environmental sources of variance. Such studies are reviewed extensively elsewhere, and we cover them only briefly in this review. Instead, we focus primarily on the identical co-twin control design. This design makes it possible to resolve the "chicken-egg" dilemma inherent in standard case-control designs, namely, distinguishing risk from sequelae. Abnormalities that are present in both the twin with PTSD and the unaffected co-twin suggest preexisting vulnerability indicators. These include smaller hippocampal volume, large cavum septum pellucidum, more neurological soft signs, lower general intellectual ability, and poorer performance in the specific cognitive abilities of executive function, attention, declarative memory, and processing of contextual cues. In contrast, abnormalities in a twin with PTSD that are not present in the identical co-twin suggest consequences of PTSD or trauma exposure. These include psychophysiological responding, higher resting anterior cingulate metabolism, eventrelated potential abnormalities associated with attentional processes, recall intrusions, and possibly some types of chronic pain. Most co-twin control studies of PTSD have been small and come from the same twin registry of middle-aged male veterans. Consequently, there is a great need for replication and extension of the findings, particularly in women and younger individuals. The creation of new twin registries would do much toward accomplishing this goal.

Keywords

PTSD; twins; heritability; behavior genetics; co-twin control; vulnerability indicator

^{© 2011} Elsevier Ltd. All rights reserved.

^{*}Corresponding author: William S. Kremen, Ph.D., Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093–0738. Tel: +1 858–822–2393; fax: +1 858–822–5856 wkremen@ucsd.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1. Introduction

An estimated 50-90% of individuals in the United States experience at least one traumatic event during their lifetime; however only a minority of trauma-exposed individuals develops posttraumatic stress disorder (PTSD) (Kessler et al., 1995; Roberts et al., in press-a; Roberts et al., in press-b). PTSD constitutes a response to trauma exposure that involves intense fear, helplessness or horror plus symptoms of persistent reexperiencing of the traumatic event, persistent avoidance of trauma-associated stimuli and numbing of responsiveness, and persistent increased arousal (American Psychiatric Association, 2000). Conditional risk of PTSD is highly variable by type of exposure ranging from 80% among former prisoners of war (Engdahl et al., 1997) to about 50% among rape survivors and 8% among individuals exposed to natural disasters (Kessler et al., 1995). Despite gains in the psychosocial literature to identify variables related to vulnerability in the aftermath of exposure to a traumatic event (Brewin et al., 2000; Ozer et al., 2003), a large amount of variance remains unexplained. In this article, we review the literature on twin studies of PTSD with a particular focus on how twin designs can be used to distinguish between vulnerability factors for and consequences of the disorder. A recent, extensive review of twin studies of PTSD by Afifi et al. (2010) focused primarily on the classical twin design. Here we focus on studies that were not available at the time of that review, and primarily on the co-twin control design, which has led to valuable contributions to our understanding of vulnerability factors for the development of PTSD.

2. Twin Designs

2.1 Classical twin design

Traditionally, the twin design was used to calculate the heritability of a phenotype, i.e., the proportion of the population variance explained by genetic factors. When heritability estimates are reported, they refer to the results of studies using the classical twin design. Basically, the twin method compares similarity between identical or monozygotic (MZ) pairs relative to similarity between fraternal or dizygotic (DZ) pairs. MZ twins share 100% of their genes as well as 100% of the common environment, which may include, but is not limited to, aspects of the family environment in which they were raised. DZ twins share roughly 50% of their genes and 100% of their common environment. If MZ twins are significantly more similar on a characteristic than DZ twins, then this *phenotype* (observed characteristic) is genetically influenced. The *heritability* estimate is derived by the formula 2(rMZ - rDZ), where r = the intraclass twin correlation (Plomin et al., 2001). For categorical phenotypes, such as PTSD, the tetrachoric correlation is used to calculate heritability. More precise estimates are obtained with maximum-likelihood-based structural equation modeling (Neale et al., 2004). Classical twin studies have made at least three important contributions to our understanding of the genetic etiology of PTSD: heritability estimates for exposure to traumatic events; heritability estimates for PTSD; and elucidating genetic and environmental factors underlying the comorbidity of PTSD and other conditions.

2.2 Co-twin control design

As with other disorders, examining abnormalities associated with PTSD presents a "chicken-egg" problem. How do we determine whether abnormalities were consequences of the disorder or were pre-existing? Something can only be a vulnerability factors if it has been shown to precede the disorder onset. In much PTSD research, traditional case-control designs are used to assess whether a given biological marker is more prevalent in individuals who already have PTSD compared to trauma-exposed controls who did not develop PTSD. Such studies show whether a biological factor is a correlate of PTSD. However, traditional case-control designs cannot determine whether the biological factor is a part of the disease

process, also referred to as a 'PTSD sign,' or a risk factor for the disorder. This limitation is present even in prospective studies that test whether biological factors assessed in the acute aftermath of trauma exposure predict the development of PTSD. Biological factors assessed in the acute aftermath of trauma exposure that predict the development of PTSD may be early indicators of the emerging disorder rather than true risk factors.

The kinds of studies just noted are incapable of differentiating chicken and egg. They cannot fully resolve the question of whether an observed sign is a risk factor or a consequence of the disorder. In many ways, the ideal study would be to follow a large group of people prospectively, with assessments covering the periods before and after exposure to trauma. But not knowing if or when traumatic events will occur is, of course, a major practical limitation. The co-twin control design is, however, particularly well-suited to address this question.

The discordant MZ twin research design offers a strategy to determine whether a biological correlate of PTSD is a risk factor for the disorder or a sign of PTSD and related posttrauma sequela. The MZ-discordant design is similar to that used in other case-controls studies when individuals with and without PTSD are compared across twin pairs on a specific biological correlate to determine whether that marker is associated with the PTSD diagnosis. However, by allowing comparisons within MZ twin pairs discordant for trauma exposure, the MZ-discordant design offers the opportunity to examine whether the biological marker is a risk factor for PTSD or develops along with PTSD (i.e., a PTSD sign). These inferences are possible because MZ twin pairs share 100% of their genes and their family environment in youth and, therefore, are matched on a number of factors that would be impossible to control for in a non-twin sample. The design includes four participant groups: (1) traumaexposed index twins who developed PTSD; (2) their "high-risk" trauma-unexposed co-twins who did not have PTSD. They are considered high risk because their genetically identical twin developed PTSD when exposed to trauma; (3) trauma-exposed index twins with no PTSD; and (4) their trauma unexposed co-twins who did not have PTSD. They are considered low risk because their genetically identical twin did not develop PTSD when exposed to trauma.

The logic behind the MZ-discordant design is that if a biological marker associated with PTSD is an underlying familial risk or vulnerability factor for the disorder then it should meet the following criteria. First, it should be associated with PTSD across twin pairs. That is, it should be more prevalent in MZ twins with PTSD than in trauma-exposed MZ twins who did not develop PTSD. Second, it should be similarly prevalent in both MZ twins with PTSD and their high-risk co-twins. In essence, the high-risk co-twin is serving as a proxy for what his/her co-twin would have been like if s/he had never been exposed to trauma and developed PTSD. If the biological marker is equally prevalent in the high-risk co-twins and the MZ twins with PTSD then this suggests the marker existed prior to the development of PTSD. Third, the biological marker should be more prevalent in the high-risk co-twins than in the MZ control twins exposed to trauma who did not develop PTSD or their low-risk co-twins.

3. Findings from Classical Twin Studies

3.1 Heritability of traumatic events

An important contribution of classical twin studies has been the recognition of genetic influences on environmental exposures. Organisms are not merely passive recipients of environmental experiences; rather, organisms often play an active role in selecting the environments to which they are exposed. This phenomenon has been referred to as gene-environment covariance, gene-environment correlation or genetic control of exposure to the

environment (Kendler and Eaves, 1986). Selection of one's environment, and the subsequent potential for exposure to trauma, is partly determined by genetic factors (Kendler and Baker, 2007). For example, twin studies have demonstrated that genetic factors influence exposure to combat and violence. Lyons et al. (1993) studied members of the Vietnam Era Twin (VET) Registry and investigated variables indicative of combat-related trauma (e.g., volunteering for service in Southeast Asia, service in Southeast Asia, combat exposure, being awarded a combat medal). Heritability estimates ranged from .35 for Southeast Asia service to .54 for being awarded a combat medal. The common environment was not a significant influence on any of these combat-related variables. In a study of a sample of volunteer twins, Jang et al. (2001) reported a significant heritability for assaultive traumatic events and no significant heritability for non-assaultive traumatic events. The influence of the environment shared by twins was significant for non-assaultive traumatic events, but not for assaultive traumatic events. In another study using a sample that overlapped with that of Jang et al (2001), Stein et al. (2002) reported that the best fitting model for assaultive trauma indicated that genetic factors explained 20% of the variance, while the shared and nonshared environments explained 21% and 58% of the variance, respectively. The best fitting model for non-assaultive trauma did not include genetic effects; the shared environment explained 39% of the variance and the unique environment explained 61% of the variance. In a large sample of Dutch twins, Middeldorp et al. (2005) found evidence for familial influences on a wide range of stressful life events. However, for potentially traumatic events such as robbery, assault and traffic accidents they were unable to distinguish between genetic and common environmental influences.

In general, this relatively small number of studies supports the importance of considering the role that genetic factors play in influencing the probability that an individual will be exposed to traumatic experiences. The evidence is strongest for the role of genetic factors in exposure to assaultive trauma, particularly if one considers combat exposure to be "assaultive trauma." More work needs to be done to fully elucidate this phenomenon as combat-related trauma is almost certainly an admixture of assaultive and non-assaultive trauma. For example, one's most traumatic combat-related experience may be seeing others being killed or injured. Nevertheless, these studies indicate that influencing the individual's selection of his or her environment is one mechanism by which genetic factors influence the risk of experiencing a traumatic event, which in turn, influences the risk of developing PTSD

3.2 Heritability of PTSD

Classical twin studies suggest that genetic influences explain a substantial proportion of vulnerability to PTSD even after accounting for genetic influences on trauma exposure. An early examination of the VET Registry twins reported that 30% of the variance in PTSD was accounted for by genetic factors, even after controlling for combat exposure (True et al., 1993). Similarly, a twin study of male and female civilian volunteers identified similar heritability of PTSD, with further variance accounted for by non-shared environmental factors (Stein et al., 2002). Taken together with family research designs using disaster-exposed samples (e.g., Goenjian et al., 2008), which are less vulnerable to the self-selection bias that may exist in samples exposed to military or assaultive violence, these findings suggest that genetic factors play an important role in vulnerability to developing PTSD.

3.3 Genetic influences on comorbidity with other psychiatric disorders

The classical twin design can be extended to examine the genetic and environmental architecture of the covariation of two or more phenotypes. For example, a recent reanalysis of data from the VET Registry suggests that, in fact, genetic influences on PTSD overlap with those for both the externalizing and internalizing disorders (Wolf et al., 2010). Bivariate and multivariate twin studies have shown that genetic influences on PTSD largely

overlap with those for other mental disorders. Specifically, genetic factors that influence the risk of major depression account for the majority of the genetic variance in PTSD (Fu et al., 2007; Koenen et al., 2008). Genetic influences common to generalized anxiety disorder and panic disorder symptoms account for approximately 60% of the genetic variance in PTSD (Chantarujikapong et al., 2001) and those common to alcohol and drug dependence (Xian et al., 2000) and nicotine dependence (Koenen et al., 2005) account for over 40% of the variance associated with PTSD.

3.4 General cognitive ability and risk of PTSD

An inverse association between cognitive ability and PTSD has been well documented in civilian (Breslau et al., 2006; Koenen et al., 2007) and military samples (Kremen et al., 2007; Macklin et al., 1998; Pitman et al., 1991). Although impaired cognitive ability has been proposed as a consequence of trauma and PTSD (De Bellis et al., 1999), work from our group using data from the VET Registry suggests lower general cognitive ability is present prior to trauma exposure (Kremen et al., 2007). These results are described in greater detail in the sections on co-twin control studies. Here we note, however, that we also performed classical bivariate twin analyses which suggest that the association between cognitive ability and PTSD is largely explained by common genetic influences (Kremen et al., 2007).

4. Findings from Co-Twin Control Studies

These studies indicate that several abnormalities that were originally assumed to be the sequelae of PTSD actually appear to be pre-existing risk or protective factors. Findings from these co-twin control studies are summarized in Table 1.

4.1 Support for Pre-Existing Risk or Protective Factors

4.1.1 Abnormally large cavum septum pellucidum (CSP)—The CSP exists when the medial walls of the lateral ventricles in the brain fail to fuse, leaving a small cavity. The CSP is present at birth but is usually absent by 3 to 6 months of age. The prevalence of an abnormally large CSP is thought to be approximately 20% in adults and associated with abnormal limbic system development (Sarwar, 1989). In the MZ twin discordant design, an abnormally large CSP was found more often in those with PTSD and their high-risk non-combat exposed co-twins than in combat-exposed veterans without PTSD and their low-risk co-twins (May et al., 2004). These results suggest an abnormal CSP serves as a risk-factor for chronic PTSD.

4.1.2 Smaller hippocampal volume—Smaller hippocampal volume has been correlated with PTSD in several non-twin case-control studies (Bremner et al., 1995; De Bellis et al., 2001; Gurvits et al., 1996; Hedges et al., 2003; Villarreal et al., 2002). Two recent metaanalyses confirm the association between PTSD diagnosis and smaller hippocampal volume (Kitayama et al., 2005; Smith, 2005). The association between PTSD diagnosis and smaller hippocampal volume has been attributed to the adverse effects of stress hormones on the brain (Sapolsky, 2000), as animal models show hippocampal damage in response to extreme stress (Sapolsky, 1996; Sapolsky et al., 1990). However, an important study of hippocampal volume and PTSD using the MZ discordant design found smaller hippocampal volume not only in combat veterans with chronic PTSD, but also in their non-combat exposed co-twins as compared to combat veterans who did not develop the disorder (Gilbertson et al., 2002). These results suggest that small hippocampal volume is a risk factor for chronic PTSD (Gilbertson et al., 2002). In a non-twin study by Woodward et al. (2006), there was evidence suggesting that the association between PTSD and smaller hippocampal volume is present when there is comorbid alcohol dependence. This issue warrants further examination as many participants in the Gilbertson et al. study had histories of alcohol dependence. On the

Kremen et al.

other hand, it is worth noting that the effect size—based on Cohen's d(1988)—for participants without alcohol dependence in the study of Woodward et al. was d=.34. This was similar to the effect found by Gilbertson et al, but it did not reach statistical significance in the Woodward et al. study. Thus, smaller hippocampal volume may still be a risk factor, but one that is enhanced by comorbid alcohol dependence. The persistence of PTSD symptoms may also be a factor because studies that found smaller hippocampi in individuals with PTSD appear to have been those that included more chronic cases (Gilbertson et al., 2007).

4.1.3 Neurological soft signs—Neurological soft signs are assessed by neurological exam and represent subtle indices of neurological function that cannot be linked to a specific brain region. Neurological soft signs have been correlated with PTSD in several studies (Gurvits et al., 1997; Gurvits et al., 1993). Greater neurological soft signs are thought to represent "subtle cortical dysfunction" that confers vulnerability to developing chronic PTSD possibly via "failure of inhibitory control over conditioned emotional responses (p. 249)" (Pitman et al., 2006). In an MZ discordant design, combat-exposed twins with PTSD had more neurological soft signs than those without PTSD. Moreover, the high-risk co-twins of the combat veterans with PTSD had more neurological soft signs than the low-risk co-twins of the combat veterans who did not develop PTSD, suggesting that neurological soft signs are a risk factor for PTSD (Gurvits et al., 2006).

4.1.4 Neurocognitive performance deficits—As discussed above, an inverse association between pre-trauma general intellectual ability and risk of PTSD has been welldocumented in both veteran (Kremen et al., 2007; Macklin et al., 1998; Pitman et al., 1991) and civilian samples (Breslau et al., 2006; Koenen et al., 2007). In a modified co-twin control study with a large sample of both MZ and DZ twins, pre-trauma general intellectual ability was lowest in pairs concordant for PTSD, highest in pairs concordant for not having PTSD, and intermediate for PTSD-discordant pairs (Kremen et al., 2007). Closer examination of the PTSD-discordant pairs revealed that cognitive differences were accounted for by DZ, but not MZ, pairs. This finding suggests that the differences were due to genetic factors because that would preclude MZ twin differences. Findings from the MZ discordant design also suggest other specific domains of neurocognitive performance that are commonly implicated in PTSD are actually familial risk factors for PTSD (Gilbertson et al., 2006). These include attention, verbal declarative memory, and executive function deficits. In a subsequent study, Gilbertson et al. (2007) found that both MZ twins with PTSD and their co-twins were impaired in configural processing of contextual cues. These deficits, which were associated with hippocampal volume, are also related to deficits in contextbased extinction of conditioned fear responses.

4.2 Features that are sequelae of PTSD or trauma exposure

Here we refer generally to deficits or abnormalities that are present only in MZ twins with PTSD but not in their co-twins or in control twins, or are present to a greater degree in the twins with PTSD.

4.2.1 Neurocognitive functions—Although the pattern of neuropsychological performance suggests that most deficits are risk factors for PTSD, recall intrusions—which may be associated with deficits in cognitive inhibition—followed a pattern suggesting that they are related to trauma exposure independent of PTSD (Gilbertson et al., 2006). It is also worth noting that there were small differences between combat-exposed twins with PTSD and their unexposed co-twins in verbal memory, attention, and general visual-spatial ability. Exposed twins performed more poorly, with effect sizes ranging from d=.21 to .27, although these differences were not statistically significant in these relatively small samples.

4.2.2 Brain structure and function—Reduced gray matter density in a voxel-based morphometry study was found in the rostral anterior cingulate in combat-exposed twins with PTSD compared with combat-exposed twins without PTSD (Kasai et al., 2008). Results of a positron emission tomography study suggested that higher resting metabolism in the anterior and mid-cingulate cortex is a familial risk factor for PTSD. The rostral anterior cingulate is considered to be the affective division of the cingulate cortex, whereas the anterior/mid-cingulate is thought to be important for conflict monitoring and response selection.

4.2.3 Psychophysiology/electrophysiology—Milad et al. (2008) conducted a study of reduced recall of fear extinction in PTSD using a discordant twin pair approach. They studied 14 pairs of MZ twins discordant for combat exposure; half of the combat exposed twins had PTSD. Participants were administered a fear conditioning and extinction paradigm. On the day following extinction, twins with PTSD demonstrated poorer extinction recall than their own co-twins without combat exposure and unrelated subjects with combat exposure, but without PTSD. Results indicated that deficits in the retention of extinction of a conditioned fear is the result of combat exposure leading to PTSD and does not represent a vulnerability to the development of PTSD given exposure to combat. Large heart rate responses to sudden, loud tones were also found to be consequences of PTSD rather than a familial risk factor (Orr et al., 2003).

In co-twin control studies of auditory event-related potentials, results were consistent with both reduced P3b amplitude (Metzger et al., 2009) and increased P2 amplitude intensity (Metzger et al., 2008) being consequences of PTSD. P2 (200) and P3 (300) refer to families of positive wave components of event-related potentials. The P3 component is associated with voluntary attention to relevant (target) stimuli, and the P2 component is thought to be associated with inhibition and heightened central serotonergic activity. In these studies, P2 amplitude was defined as the most positive point between 140 and 230 ms after stimulus onset. P3 amplitude intensity slope was defined as the slope of P2 amplitudes in response to tones of increasing intensity. These findings do appear to be consistent with the consequences of a disorder of stress responsivity. However, Metzger et al. (2008) noted that the P2 finding was in the opposite direction of previous findings in male veterans, but consistent with findings in women and abused children.

4.2.4 Pain—Several lines of research indicate that PTSD also is significantly associated with physical health conditions. The bulk of that research has focused on the high comorbidity between PTSD and chronic pain conditions, and it is postulated that PTSD and chronic pain are mutually maintained (Sharp and Harvey, 2001) or that there are shared vulnerability factors that predispose individuals to both PTSD and chronic pain (Asmundson et al., 2002). In that regard, twin studies have been exceptionally useful in examining the potentially shared genetic and common environmental factors that may contribute to PTSD and a number of chronic pain conditions. The twin studies examining the comorbidity of PTSD and chronic pain have been, for the most part, co-twin control studies that control for the confounding effects of shared genetic and common environmental factors in examining the association between PTSD and chronic pain conditions such as temporomandibular disorders, chronic widespread pain, rheumatoid arthritis, and urological symptoms (Afari et al., 2008; Arguelles et al., 2006; Boscarino et al., 2010; Wright et al., 2010).

Boscarino and colleagues (2010) focused on the association of PTSD with rheumatoid arthritis in 3,143 male twin pairs from the VET Registry. These investigators found that familial and genetic influences did not explain the relationship between PTSD and rheumatoid arthritis. Rather, those in the upper quartile of PTSD symptoms were 3.8 times more likely (95% confidence interval = 2.1-6.1) to have rheumatoid arthritis compared with

those in the lowest quartile. This result is consistent with rheumatoid arthritis being a consequence of trauma exposure leading to PTSD.

Using the community-based University of Washington Twin Registry, Wright and colleagues (2010) examined the association of PTSD with pain symptoms of interstitial cystitis, a urological pain condition of unknown etiology that primarily affects women. Based on data from 1,165 female twins, those with painful urological symptoms were almost 4 times more likely to report PTSD symptoms (95% confidence interval = 2.6-5.8) after adjusting for age and correlated twin data. This first set of findings confirms the link between PTSD and painful urological symptoms seen in clinical studies (Clemens et al., 2008; Goldstein et al., 2008). A second set of analyses examined the association of PTSD and urological symptoms only in twin pairs discordant for urological symptoms, and again found a significant association between PTSD and painful urological symptoms (odds ratio = 2.2; 95% confidence interval = 1.2-3.8). Given that the association remains significant in the within-pair analyses that are adjusted for familial influences, the authors concluded that the link between PTSD and painful urological symptoms is independent of familial influences. These results may also be consistent with urological pain being a sequela of PTSD, but analyses will need to be conducted in twin pairs that are discordant for PTSD rather than discordant for urological pain in order to confirm that conclusion. Although there is a need for more research in this area, the pattern of findings in both of these studies suggests a move away from examining shared familial and genetic hypotheses and point to environmental risk factors that may contribute to the comorbidity of PTSD and chronic pain conditions.

5. Conclusions and Outlook

Twin studies have provided valuable contributions to our understanding of PTSD. Classical twin studies have shown that genetic factors are important determinants of risk for PTSD following exposure to trauma, but the same studies also confirm the importance of environmental factors as well. The twin method also demonstrates that we cannot simply rely on "common sense" notions of what constitutes an environmental factor. Indeed, the studies of Lyons et al. (1993) and Stein et al. (2002) indicate that variation in exposure to a traumatic event—the one thing that may seem most clearly environmental—is, in part, accounted for by genetic factors. This outcome makes sense if one considers the fact that the events to which one is exposed are not entirely random. For example, genetic predispositions (e.g., personality traits, susceptibility to alcohol abuse) will influence the kinds of environments that a person tends to seek out. Classical twin studies have also shown that there is substantial overlap of genetic factors that predispose to other anxiety disorders, depression, and substance abuse with PTSD.

Co-twin control studies have shown that some important associated features of PTSD, such as cognitive impairments or hippocampal volume reductions, are pre-existing risk factors rather than consequences of PTSD. These same studies have suggested that aspects of psychophysiological responding, brain metabolism, brain electrophysiology, and pain are consequences of PTSD that tend to be altered only after exposure to trauma and development of the disorder. It was suggested that at least one cognitive process—recall intrusions—was also a sequela of trauma exposure rather than a vulnerability indicator. There was also a suggestion, based on small differences between MZ twins within PTSD-discordant pairs, that in addition to being risk/protective factors, some cognitive processes may undergo further acquired impairment as a result of trauma exposure. In other words, abnormalities may be both risk factors and features that continue to be exacerbated postonset.

Overall, the findings suggest possible neurodevelopmental risk factors for PTSD (e.g., CSP, neurological soft signs, general cognitive ability) as well as factors that may affect frontallimbic circuitry. The latter is suggested by hippocampal and anterior cingulate findings as well as event-related potential and cognitive findings implicating executive, attentional, and episodic memory functions. A greater focus on prefrontal cortex is probably warranted. Evidence is also accumulating from co-twin control studies suggesting the importance of a variety of chronic pain conditions as sequelae of PTSD. Thus, comorbid physical as well as psychiatric disorders are important, although twin studies suggest that they are often different with respect to being risk factors versus consequences.

Given the genetic overlap with other psychiatric disorders, one obvious avenue with regard to potential pharmacological treatment is, in part, the use of medications that are successful in treating those related disorders. Perhaps the next logical step would be to focus on medications aimed at treating aspects of PTSD that have been shown to be consequences of the illness. Behaviors associated with psychophysiological and electrophysiological abnormalities as well as chronic pain might be good initial targets.

On the other hand, much of the currently available data to which we just referred are at best suggestive. The vast majority of findings stem from only two samples: the VET Registry in which the focus is most often on combat-related trauma during the Vietnam war; and Canadian twin sample of Jang, Stein and colleagues. Much of this work has also been conducted on men. It is also important to note that virtually all of the co-twin control studies have come from the same research group of Pitman and colleagues. These are valuable studies, but generalizability may be limited because all of the studies are of Vietnam era men who have been tested in the same laboratory, and because the sample sizes tend to be quite small.

Small sample size is a problem for many co-twin control designs because it is often difficult to find participants meeting the study criteria. Although large sample size is a positive feature of any study, the need for very large sample sizes for classical twin studies can be a drawback of twin research on PTSD. It is difficult to find adequately large twin samples with a large enough subset of participants with PTSD, and creating a new twin sample is particularly costly and time-consuming. The inability to identify specific genes is another commonly referred to limitation of the twin method. Ultimately, it will, of course, be important to identify key polymorphisms that are associated with risk for, or protection from, PTSD. It will also be important to clarify epigenetic changes that are associated with PTSD (e.g., changes in gene expression or DNA methylation). However, the problem of the missing heritability for so many phenotypes (Maher, 2008) clearly indicates that highthroughput methods allowing for the rapid examination of hundreds of thousands of single nucleotide polymorphisms or CpG sites has not provided a simple solution in the search for genes associated with PTSD or almost any other condition. The need to refine the definition of the phenotype and elucidate phenotypes that do or do not share genetic variance are two of the possible rate-limiting factors for gene identification. Twin methods are quite useful in this regard. Consequently, we think that twin methods provides a key complement to molecular genetic studies of PTSD and other conditions (Kremen and Lyons, 2010).

Clearly more twin studies are needed that focus on non-combat trauma and on women. This is beginning to change as there are studies in their early stages that focus on women in the University of Washington Twin Registry (Afari et al., 2006). There has not been another veteran twin registry since the VET Registry, which included male twins who served in the military at some time between 1965 and 1975 (Eisen et al., 1987). The creation of a new twin registry focused on younger veterans of the wars in Iraq and Afghanistan is something that could substantially enhance research in this area. Such a registry would be able to

address cohort differences that may be due to lifestyle differences in the different generations and to the differences in the combat experiences of the different wars. Moreover, this new registry would include women and more ethnic minorities than the VET Registry.

Finally, it should be noted that genes are anonymous in the twin method. The design is not informative as to which specific genes are involved or how many. It can, nevertheless, be very useful for identifying optimal phenotypes for genetic association studies. Moreover, recent epigenetic studies indicate that gene expression and DNA methylation (e.g., McGowan et al., 2009; Yehuda et al., 2009) are likely to be very important for understanding PTSD, and these would have obvious potential value for drug development. Twins, particularly MZ twins, can be extremely valuable in the study of gene expression or DNA methylation or histone acetylation. Many factors other than trauma can affect these processes and, thus, represent potential confounds. Using an MZ co-twin control design controls for many potential and have also shared the same rearing environment. These features make this a powerful design for epigenetic studies. This is yet another way in which the twin perspective can continue to make important contributions and to complement non-genetic studies as well as genetic association studies of PTSD.

References

- Afari, N.; Noonan, C.; Goldberg, J.; Edwards, K.; Gadepalli, K.; Osterman, B.; Evanoff, C.; Buchwald, D. University of Washington Twin Registry: Construction and characteristics of a community-based twin registry. Vol. 9. Hayakawa, K; 2006. p. 1023-1029.
- Afari N, Wen Y, Buchwald D, Goldberg J, Plesh O. Are post-traumatic stress disorder symptoms and temporomandibular pain associated? Findings from a community-based twin registry. Journal of Orofacial Pain. 2008; 22:41–49. [PubMed: 18351033]
- Afifi TO, Asmundson GJ, Taylor S, Jang KL. The role of genes and environment on trauma exposure and posttraumatic stress disorder symptoms: a review of twin studies. Clinical Psychology Review. 2010; 30:101–112. [PubMed: 19892451]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4. American Psychiatric Association; Washington, DC: 2000. Text Revision (DSM-IV-TR)
- Arguelles LM, Afari N, Buchwald DS, Clauw DJ, Furner S, Goldberg J. A twin study of posttraumatic stress disorder symptoms and chronic widespread pain. Pain. 2006; 124:150–157. [PubMed: 16701954]
- Asmundson, GJ.; Coons, MJ.; Taylor, S.; Katz, J. PTSD and the experience of pain: research and clinical implications of shared vulnerability and mutual maintenance models. Vol. 47. Asmundson, G.J; 2002. p. 930-937.
- Boscarino JA, Forsberg CW, Goldberg J. A twin study of the association between PTSD symptoms and rheumatoid arthritis. Psychosomatic Medicine. 2010; 72:481–486. [PubMed: 20410244]
- Bremner JD, Randall P, Scott TM, Bronen RA, Seibyl JP, Southwick SM, Denaley RC, McCarthy G, Charney DS, Innis RB. MRI-based measurement of hippocampal volume in patients with combatrelated posttraumatic stress disorder. American Journal of Psychiatry. 1995; 152:973–981. [PubMed: 7793467]
- Breslau N, Lucia VC, Alvarado GF. Intelligence and other predisposing factors in exposure to trauma and posttraumatic stress disorder: A follow-up study at age 17 years. Archives of General Psychiatry. 2006; 63:1238–1245. [PubMed: 17088504]
- Brewin CR, Andrews B, Valentine JD. Meta-analysis of risk factors for posttraumatic stress disorder in trauma-exposed adults. Journal of Consulting and Clinical Psychology. 2000; 68:748–766. [PubMed: 11068961]
- Chantarujikapong SI, Scherrer JF, Xian H, Eisen SA, Lyons MJ, Goldberg J, Tsuang M, True WR. A twin study of generalized anxiety disorder symptoms, panic disorder symptoms and post-traumatic stress disorder in men. Psychiatry Research. 2001; 103:133–145. [PubMed: 11549402]

- Clemens JQ, Brown SO, Calhoun EA. Mental health diagnoses in patients with interstitial cystitis/ painful bladder syndrome and chronic prostatitis/chronic pelvic pain syndrome: A case/control study. Journal of Urology. 2008; 180:1378–1382. [PubMed: 18707716]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences. Lawrence Earlbaum; Hillsdale, NJ: 1988.
- De Bellis MD, Hall J, Boring AM, Frustaci K, Moritz G. A pilot longitudinal study of hippocampal volumes in pediatric maltreatment-related posttraumatic stress disorder. Biological Psychiatry. 2001; 50:305–309. [PubMed: 11522266]
- De Bellis MD, Keshavan MS, Clark DB, Casey BJ, Giedd JN, Boring AM, Frustaci K, Ryan ND. Developmental Traumatology Part II: Brain Development. Biological Psychiatry. 1999; 45:1271– 1284. [PubMed: 10349033]
- Eisen SA, True WR, Goldberg J, Henderson W, Robinette CD. The Vietnam Era Twin (VET) Registry: Method of construction. Acta Geneticae Medicae et Gemellologiae. 1987; 36:61–66. [PubMed: 3673478]
- Engdahl BE, Dikel TN, Eberly RE, Blank AS. Posttraumatic stress disorder in a community group of former prisoners of war: A normative response to severe trauma. American Journal of Psychiatry. 1997; 154:1576–1581. [PubMed: 9356567]
- Fu Q, Koenen KC, Miller MW, Heath AC, Bucholz KK, Lyons MJ, Eisen SA, True WR, Goldberg J, Tsuang MT. Differential etiology of posttraumatic stress disorder with conduct disorder and major depression in male veterans. Biological Psychiatry. 2007; 62:1088–1094. [PubMed: 17617384]
- Gilbertson MW, Paulus LA, Williston SK, Gurvits TV, Lasko NB, Pitman RK, Orr SP. Neurocognitive function in monozygotic twins discordant for combat exposure: Relationship to posttraumatic stress disorder. Journal of Abnormal Psychology. 2006; 115:484–495. [PubMed: 16866589]
- Gilbertson MW, Shenton ME, Ciszewski A, Kasai K, Lasko NB, Orr SP, Pitman RK. Smaller hippocampal volume predicts pathological vulnerability to psychological trauma. Nature Neuroscience. 2002; 5:1242–1247.
- Gilbertson MW, Williston SK, Paulus LA, Lasko NB, Gurvits TV, Shenton ME, Pitman RK, Orr SP. Configural cue performance in identical twins discordant for posttraumatic stress disorder: Theoretical implications for the role of hippocampal function. Biological Psychiatry. 2007; 62:513–520. [PubMed: 17509537]
- Goenjian AK, Noble EP, Walling DP, Goenjian HA, Karayan IS, Ritchie T, Bailey JN. Heritabilities of symptoms of posttraumatic stress disorder, anxiety and depression in earthquake exposed Armenian families. Psychiatric Genetics. 2008; 18:261–266. [PubMed: 19018230]
- Goldstein, HB.; Safaeian, P.; Garrod, K.; Finamore, PS.; Kellogg-Spadt, S.; Whitmore, KE. Depression, abuse and its relationship to interstitial cystitis. Vol. 19. Goldstein, H.B; 2008. p. 1683-1686.
- Gurvits TV, Gilbertson MW, Lasko NB, Orr SP, Pitman RK. Neurological status of combat veterans and adult survivors of sexual abuse PTSD. Annals of the New York Academy of Sciences. 1997; 821:468–471. [PubMed: 9238231]
- Gurvits TV, Lasko NB, Schachter SC, Kuhne AA, Orr SP, Pitman RK. Neurological status of Vietnam veterans with chronic posttraumatic stress disorder. Journal of Neuropsychiatry and Clinical Neurosciences. 1993; 5:183–188. [PubMed: 8508036]
- Gurvits TV, Metzger LJ, Lasko NB, Cannistraro PA, Tarhan AS, Gilbertson MW, Orr SP, Charbonneau AM, Wedig MM, Pitman RK. Subtle neurologic compromise as a vulnerability factor for combat-related posttraumatic stress disorder: results of a twin study. Archives of General Psychiatry. 2006; 63:571–576. [PubMed: 16651514]
- Gurvits, TV.; Shenton, ME.; Hokama, H.; Ohta, H.; Lasko, NB.; Gilbertson, MW.; Orr, SP.; Kikinis, R.; Jolesz, FA.; McCarley, RW.; Pitman, RK. Magnetic resonance imaging study of hippocampal colume in chronic combat-related posttraumatic stress disorder. Vol. 40. Gurvits, T.V; 1996. p. 1091-1099.
- Hedges, DW.; Allen, S.; Tate, DF.; Thatcher, GW.; Miller, MJ.; Rice, SA.; Cleavinger, HB.; Sood, S.; Bigler, ED. Reduced hippocampal volume in alcohol and substance naive Vietnam combat veterans with posttraumatic stress disorder. Vol. 16. Hedges, D.W; 2003. p. 219-224.

- Jang KL, Vernon PA, Livesley WJ, Stein MB, Wolf H. Intra- and extra-familial influences on alcohol and drug misuse: A twin study of gene-environment correlation. Addiction. 2001; 96:1307–1318. [PubMed: 11672495]
- Kasai K, Yamasue H, Gilbertson MW, Shenton ME, Rauch SL, Pitman RK. Evidence for acquired pregenual anterior cingulate gray matter loss from a twin study of combat-related posttraumatic stress disorder. Biological Psychiatry. 2008; 63:550–556. [PubMed: 17825801]
- Kendler KS, Baker JH. Genetic influences on measures of the environment: A systematic review. Psychological Medicine. 2007; 37:615–626. [PubMed: 17176502]
- Kendler KS, Eaves LJ. Models for the joint effect of genotype and environment on liability to psychiatric illness. American Journal of Psychiatry. 1986; 143:279–289. [PubMed: 3953861]
- Kessler RC, Sonnega A, Bromet E, Hughes M, Nelson CB. Posttraumatic stress disorder in the National Comorbidity Survey. Archives of General Psychiatry. 1995; 52:1048–1060. [PubMed: 7492257]
- Kitayama N, Vaccarino V, Kutner M, Weiss P, Bremner JD. Magnetic resonance imaging (MRI) measurement of hippocampal volume in posttraumatic stress disorder: A meta-analysis. Journal of Affective Disorders. 2005; 88:79–86. [PubMed: 16033700]
- Koenen KC, Fu QJ, Ertel K, Lyons MJ, Eisen SA, True WR, Goldberg J, Tsuang MT. Common genetic liability to major depression and posttraumatic stress disorder in men. Journal of Affective Disorders. 2008; 105:109–115. [PubMed: 17540456]
- Koenen KC, Hitsman B, Lyons MJ, Niaura R, McCaffery J, Goldberg J, Eisen SA, True W, Tsuang M. A twin registry study of the relationship between posttraumatic stress disorder and nicotine dependence in men. Archives of General Psychiatry. 2005; 62:1258–1265. [PubMed: 16275813]
- Koenen KC, Moffitt TE, Poulton R, Martin J, Caspi A. Early childhood factors associated with the development of post-traumatic stress disorder: Results from a longitudinal birth cohort. Psychological Medicine. 2007; 37:181–192. [PubMed: 17052377]
- Kremen WS, Koenen KC, Boake C, Purcell S, Eisen SA, Franz CE, Tsuang MT, Lyons MJ. Pretrauma cognitive ability and risk for posttraumatic stress disorder: A twin study. Archives of General Psychiatry. 2007; 64:361–368. [PubMed: 17339525]
- Kremen, WS.; Lyons, MJ. Behavior genetics of aging. In: Schaie, KW.; Willis, SL., editors. Handbook of the psychology of aging. 7. Elsevier; San Diego, CA: 2010. p. 93-107.
- Lyons MJ, Goldberg J, Eisen SA, True W, Meyer J, Tsuang MT, Henderson W. Do genes influence exposure to trauma? A twin study of combat. American Journal of Medical Genetics (Neuropsychiatric Genetics). 1993; 48:22–27. [PubMed: 8357033]
- Macklin ML, Metzger LJ, Litz BT, McNally RJ, Lasko NB, Orr SP. Lower precombat intelligence is a risk factor for posttraumatic stress disorder. Journal of Consulting and Clinical Psychology. 1998; 66:323–326. [PubMed: 9583335]
- Maher B. Personal genomes: The case of the missing heritability. Nature. 2008; 456:18–21. [PubMed: 18987709]
- May FS, Chen QC, Gilbertson MW, Shenton ME, Pitman RK. Cavum septum pellucidum in monozygotic twins discordant for combat exposure: Relationship to posttraumatic stress disorder. Biological Psychiatry. 2004; 55:656–658. [PubMed: 15013837]
- McGowan PO, Sasaki A, D'Alessio AC, Dymov S, Labonte B, Szyf M, Turecki G, Meaney MJ. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience. 2009; 12:342–348.
- Metzger LJ, Clark CR, McFarlane AC, Veltmeyer MD, Lasko NB, Paige SR, Pitman RK, Orr SP. Event-related potentials to auditory stimuli in monozygotic twins discordant for combat: Association with PTSD. Psychophysiology. 2009; 46:172–178. [PubMed: 18803598]
- Metzger LJ, Pitman RK, Miller GA, Paige SR, Orr SP. Intensity dependence of auditory P2 in monozygotic twins discordant for Vietnam combat: Associations with posttraumatic stress disorder. Journal of Rehabilitation Research and Development. 2008; 45:437–449. [PubMed: 18629752]
- Middeldorp, CM.; Cath, DC.; Vink, JM.; Boomsma, DI. Twin and genetic effects on life events. Vol. 8. Hayakawa, K; 2005. p. 224-231.

- Milad MR, Orr SP, Lasko NB, Chang Y, Rauch SL, Pitman RK. Presence and acquired origin of reduced recall for fear extinction in PTSD: Results of a twin study. Journal of Psychiatric Research. 2008; 42:515–520. [PubMed: 18313695]
- Neale, MC.; Boker, SM.; Xie, G.; Maes, HH. Mx: Statistical Modeling. Department of Psychiatry, Medical College of Virginia; Richmond, VA: 2004.
- Orr SP, Metzger LJ, Lasko NB, Macklin ML, Hu FB, Shalev AY, Pitman RK. Physiologic responses to sudden, loud tones in monozygotic twins discordant for combat exposure: Association with posttraumatic stress disorder. Archives of General Psychiatry. 2003; 60:283–288. [PubMed: 12622661]
- Ozer EJ, Best SR, Lipsey TL, Weiss DS. Predictors of posttraumatic stress disorder and symptoms in adults: A meta-analysis. Psychological Bulletin. 2003; 129:52–73. [PubMed: 12555794]
- Pitman RK, Gilbertson MW, Gurvits TV, May FS, Lasko NB, Metzger LJ, Shenton ME, Yehuda R, Orr SP. Clarifying the origin of biological abnormalities in PTSD through the study of identical twins discordant for combat exposure. Annals of the New York Academy of Sciences. 2006; 1071:242–254. [PubMed: 16891575]
- Pitman RK, Orr SP, Lowerhagen MJ, Macklin ML, Altman B. Pre-Vietnam contents of PTSD veterans' service medical and personnel records. Comprehensive Psychiatry. 1991; 32:1–7. [PubMed: 2001616]
- Plomin, R.; DeFries, JC.; McClearn, GE.; McGuffin, P. Behavioral genetics. Worth; New York: 2001.
- Roberts AL, Austin SB, Corliss HL, Morris AP, Koenen KC. Sexual orientation dispariities in trauma exposure and risk of posttraumatic stress disorder. American Journal of Public Health. in press-a.
- Roberts AL, Gilman SE, Breslau J, Breslau N, Koenen KC. Race-ethnic differences in exposure to traumatic events, development of posttraumatic stress disorder, and treatment seeking in the United States population. Psychological Medicine. in press-b.
- Sapolsky RM. Why stress is bad for your brain. Science. 1996; 273:749–750. [PubMed: 8701325]
- Sapolsky RM. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Archives of General Psychiatry. 2000; 57:925–935. [PubMed: 11015810]
- Sapolsky RM, Uno J, Remert CS, Finch CE. Hippocampal damage associated with prolonged glucocorticoid exposure in primates. Journal of Neuroscience. 1990; 10:2897–2902. [PubMed: 2398367]
- Sarwar M. The septum pellucidum: Normal and abnormal. AJNR American Journal of Neuroradiology. 1989; 10:989–1005. [PubMed: 2505543]
- Sharp TJ, Harvey AG. Chronic pain and posttraumatic stress disorder: Mutual maintenance? Clinical Psychology Review. 2001; 21:857–877. [PubMed: 11497210]
- Smith ME. Bilateral hippocampal volume reduction in adults with post-traumatic stress disorder: A meta-analysis of structural MRI studies. Hippocampus. 2005; 15:798–807. [PubMed: 15988763]
- Stein MB, Jang KL, Taylor S, Vernon PA, Livesley WJ. Genetic and environmental influences on trauma exposure and posttraumatic stress disorder symptoms: A twin study. American Journal of Psychiatry. 2002; 159:1675–1681. [PubMed: 12359672]
- True WJ, Rice J, Eisen SA, Heath AC, Goldberg J, Lyons MJ, Nowak J. A twin study of genetic and environmental contributions to liability for posttraumatic stress symptoms. Archives of General Psychiatry. 1993; 50:257–264. [PubMed: 8466386]
- Villarreal G, Hamilton DA, Petropoulos H, Driscoll I, Rowland LM, Griego JA, Kodituwakku PW, Hart BL, Escalona R, Brooks WM. Reduced hippocampal volume and total white matter volume in posttraumatic stress disorder. Biological Psychiatry. 2002; 52:119–125. [PubMed: 12114003]
- Wolf EJ, Miller MW, Krueger RF, Lyons MJ, Tsuang MT, Koenen KC. Posttraumatic stress disorder and the genetic structure of comorbidity. Journal of Abnormal Psychology. 2010; 119:320–330. [PubMed: 20455605]
- Woodward SH, Kaloupek DG, Streeter CC, Kimble MO, Reiss AL, Eliez S, Wald LL, Renshaw PF, Frederick BB, Lane B, Sheikh JI, Stegman WK, Kutter CJ, Stewart LP, Prestel RS, Arsenault NJ. Hippocampal volume, PTSD, and alcoholism in combat veterans. American Journal of Psychiatry. 2006; 163:674–681. [PubMed: 16585443]

- Wright LJ, Noonan C, Ahumada S, Rodriguez MA, Buchwald D, Afari N. Psychological distress in twins with urological symptoms. General Hospital Psychiatry. 2010; 32:262–267. [PubMed: 20430229]
- Xian H, Chantarujikapong SI, Shrerrer JF, Eisen SA, Lyons MJ, Goldberg J, MTT, True WJ. Genetic and environmental influences on posttraumatic stress disorder, alcohol, and drug dependence in twin pairs. Drug and Alcohol Dependence. 2000; 61:95–102. [PubMed: 11064187]
- Yehuda R, Cai G, Golier JA, Sarapas C, Galea S, Ising M, Rein T, Schmeidler J, Muller-Myhsok B, Holsboer F, Buxbaum JD. Gene expression patterns associated with posttraumatic stress disorder following exposure to the world trade center attacks. Biological Psychiatry. 2009

Table 1

Co-twin control studies of factors associated with PTSD

Study	Associated phenotype	Type of trauma
Pre-existing risk/protective	factors for PTSD	
May et al. (2004)	Enlarged cavum septum pellucidum	Combat exposure
Gilbertson et al. (2002)	Reduced hippocampal volume ^a	Combat exposure
Gurvits et al. (2006)	More neurological soft signs	Combat exposure
Kremen et al. (2007)	General cognitive ability (g)	Mixed (combat exposure and other traumatic events)
Gilbertson et al. (2006)	Attention, verbal declarative memory, executive function	Combat exposure
Gilbertson et al. (2007)	Configural processing of contextual cues	Combat exposure
Sequelae of PTSD		
Gilbertson et al. (2006)	Recall intrusions ^b	Combat exposure
Kasai et al. (2008)	Reduced rostral anterior cingulate gray matter density (voxel-based morphometry)	Combat exposure
Milad et al. (2008)	Poorer extinction of conditioned fear	Combat exposure
Orr et al. (Orr et al., 2003)	Increased heart rate response to sudden, loud tones	Combat exposure
Metzger et al. (2008)	Increased auditory P2 amplitude intensity slope	Combat exposure
Metzger et al. (2009)	Reduced auditory P3b amplitude	Combat exposure
Boscarino et al. (2010)	Rheumatoid arthritis ^C	Mixed
Wright et al. (2010)	Interstitial cystitis (urological pain) $^{\mathcal{C}}$	Mixed

 a Some evidence suggests that hippocampal reductions may partially be a function of comorbid alcohol dependence.

 $^b\mathrm{These}$ appear to be due to trauma exposure itself, independent of PTSD.

^cResults are consistent with these being sequelae of PTSD, but the study design does not allow for that direct conclusion.