
Environmental Mediation and The Twin Design

Shaun Purcell1 and Karestan C. Koenen2

Received 7 July 2004—Final 23 Nov. 2004

Behavior genetic twin designs are increasingly used to study the effects of a measured
environment whilst controlling for genetic variation. In this research note, we show that, in the
context of the classical twin design, (1) when the environmental variable is necessarily shared
between twins, the notion of controlling for genetic influence is logically flawed and (2) when

the environmental variable varies between twins in the same family, partial control for genetic
influence is possible, but only if appropriate analytic models are used, which is commonly not
the case. Based on a simple simulation study, recommendations are given as to which methods

should be applied and which should be avoided.
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ENVIRONMENTAL MEDIATION AND

THE TWIN DESIGN

A centrally important insight for behavior genetics
was that the environment can show genetic influence:
the so-called nature of nurture (Plomin and Bergeman,
1991). As a consequence, behavior genetic designs
have been promoted as being uniquely positioned to
address questions of environmental mediation as well
as genetic influence: that is, to investigate the effect of
an environment on a trait whilst controlling for
common genetic influence. This is important because
an association between an environment and an out-
come may arise due to a third variable, namely com-
mon genetic liability.

This genetic third variable confound was
described in detail by DiLalla and Gottesman (1991),
in responding to the current wisdom regarding the
role of child abuse in the intergenerational trans-
mission of violence (Widom, 1989). In particular,
they noted that children who are abused may also
have increased genetic risk for antisocial behavior, if
antisocial parents are more likely to abuse their

children and antisocial behavior is heritable. As such,
childhood abuse does not cause antisocial behavior
in any sense: the environment does not mediate the
association.

Whether or not an association is environmen-
tally mediated might be important for informing
intervention. For example, if the association between
child abuse and antisocial behavior is environmen-
tally mediated, then interventions aimed at prevent-
ing child abuse may also prevent antisocial behavior.
If the association is due to a genetic third variable,
then preventing abuse, although clearly important for
its own sake, may well have no impact on risk for
antisocial behavior.

Twin designs

The basic logic of using the twin design to test
environmental mediation is as follows: if the test for
association between an environment and an outcome
can be placed within a genetically-informative con-
text in which genetic variance is explicitly modelled,
then a significant result should reflect true environ-
mental mediation. That is, an association between
environment and outcome can be estimated that is
‘‘uncontaminated’’ by genetic influence. However, as
we shall show, twin data alone cannot offer as much
of a control for common genetic influence as is
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sometimes claimed; furthermore, even in situations
where they potentially could, inappropriate analytic
methods are often used.

Environments may be either obligatory-shared
between twins (e.g., neighborhood or parental
socio-economic status, SES) or individual-specific
(e.g., diet or suffering some trauma). Researchers
have tested environmental mediation models within
behavior genetic designs both when the environment
is obligatory-shared (Miller et al., 2001) and when it
is not (Jaffee et al., 2004). Depending on the type of
environment, we argue that environmental mediation
models are either logically flawed (in the case of
obligatory-shared environments) or often performed
in a biased manner (in the case of individual-specific
environments).

In this article we present a number of analytic
strategies that have been used with the aim of
testing for environmental mediation unconfounded
by genetic influence; we review some of the details
of methods and apply simple simulation study
approaches to evaluate them. Throughout this article,
the term common will be used only in the bivariate
sense (i.e., a genetic factor that is common to both X
and Y) and not in the family-wide sense (i.e., the term
shared environment will always be used with respect to
the latent variable C) or the frequency sense (i.e., a
rare or common genetic variant).

OBLIGATORY-SHARED ENVIRONMENTS

To illustrate thesemethodsmost easily,we assume
that outcome trait Y and environment X are quanti-
tative, normally-distributed measures. The most sim-
ple analytic baseline is the regression of trait on
environment, in a sample of unrelated individuals

Y ¼ b0 þ b1Xþ e: ð1Þ
The test for an association between trait and envi-
ronment is performed with the 1 df test. H0 : b1=0. A
significant b1 is consistent with environmental medi-
ation; it is also consistent with common genetic fac-
tors. This phenotypic regression method is labelled
PH in the simulations below.

Using twin data, several researchers have
adapted the DeFries-Fulker (DF) regression model
(DeFries and Fulker, 1985, 1988) to attempt to model
the association whilst controlling for genetic factors:

Y1 ¼ b0 þ b1Y2 þ b2Rþ b3RY2 þ b4X1 þ e; ð2Þ
where the subscripts on X and Y distinguish between
twins in a pair and R is the coefficient of genetic

relatedness (1 for MZ pairs; 0.5 for DZ pairs). In this
case, we assume the environment is obligatory-shared
so X1=X2; this model is also applicable for individ-
ual-specific environments, as discussed in the next
section. The proposed test of environmental media-
tion is the 1 df test H0 : b4=0. This method is labelled
DF1 in the simulations below. Despite claims that this
formulation controls for genetic influence, this is not
the case, as will be shown below.

Alternatively, variance components approaches
have been used to address the question of environ-
mental mediation. If the environment is obligatory-
shared, a standard univariate ACE model for Y can
be constructed, with an additional single-headed
arrow path from observed obligatory-shared envi-
ronment X to a single latent C variable (Caspi et al.,
2000). The coefficient for this extra path is labelled m
and the model is the ACEm model. The test involves
fixing m to zero: this procedure is equivalent to test-
ing the effect of an obligatory-shared environment
entered as a predictor variable in the means model
(Koenen et al., 2003). Whereas the standard ACEm

model is applicable only to obligatory-shared
environments, the means model formulation is
also applicable to individual-specific environments.
However, both approaches are in fact estimating
latent genetic factors whilst controlling for the mea-
sured environment, rather than estimating the effect
of the measured environment whilst controlling for
latent genetic factors. That is, considering for exam-
ple the means model approach, although both the
phenotypic mean and variance are modelled, this is of
the form Y� N (l+b X, r2) where r2 represents the
residual variation around EðY j X Þ, where X is the
measured environment. Although it is possible to
further partition r2 (e.g., into additive genetic and
environmental components) the variation estimated
by r2 is only variation around the expected value of
the phenotype conditional on X.

No matter which analytic method or model is
applied, it is logically impossible to test for an envi-
ronmental effect of an obligatory-shared variable
whilst controlling for genetic effects using only twin
data. If the environment is obligatory-shared, then
within the context of the twin study, the genetic and
nonshared environmental correlations rG and rE
between environment and outcome are not defined or
identified. The question of controlling for genetic
influence is therefore moot. Although it is perfectly
possible for an obligatory-shared environment to
show genetic influence, this genetic influence would
never be detectable using a twin design. For example,
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it is quite possible that parents’ genes influence their
SES. One could, in theory, perform a molecular
genetic study to detect a correlation between mea-
sured parental genotype and SES (whether this is a
function of paternal and/or maternal genotype).
Furthermore, one could also perform a study to find
a (smaller, due to segregation variance) correlation
between measured offspring genotype and measured
parental SES. However, a twin study of the variable
‘parental SES’ would clearly yield a heritability esti-
mate of zero, as rMZ=rDZ=1.0 (and so all variance
would be attributed to the shared environment). That
is, despite being a genetically-influenced trait, SES is
a property of the parents, not of the twins. Even if
SES were completely determined by genes, parental
SES would still contribute to C and not A in a twin
model, as there is no difference between the extent to
which MZ and DZ twins share parental genotype.

We performed a simple proof-of-principle sim-
ulation study, using the model outlined in Appendix
I. The simulations approximately gave the following
scenarios: an MZ correlation of 0.50; a DZ correla-
tion of 0.25; a parent-offspring correlation 0.25; an
offspring trait and family-wide environment correla-
tion of 0.15. Two sets of simulations were performed:
in the first instance, the family-wide environment was
a function of parental phenotypes; in the second case,
the family-wide environment was a function of
parental genotypes. This second scenario represents
the perfectly plausible case in which the genes that
influence, say, parental antisocial behavior also
influence parental SES (i.e., mediated via personality
for instance), while the environmental influences on
parental antisocial behavior are different from the
environmental influences on parental SES. In both
cases, there is no environmental mediation.

Applying the variance components model de-
scribed above to test for environmental mediation, a
significant reduction in fit at the 5% significance level
was observed in 96% of the replicates in the first
scenario (parental phenotypes influence the environ-
ment) and in 97% of the replicates in the second
scenario (parental genotypes influence the environ-
ment). In other words, rather than the expected 5%
error rates, this test suggests that environmental
mediation is present when in fact the association
between environment and outcome is due to common
genetic factors.

Although it is beyond the scope of the classical
twin design and this research note, it is of interest to
note that some authors have suggested incorporating
parental phenotypes into the models that attempt to

test for environmental mediation with obligatory-
shared environments (Kendler et al., 1996). The basic
model used by Kendler et al., (in which parental
phenotypes are modelled as extra dependent vari-
ables) should approximately correspond to entering
both parental phenotypes as covariates in the means
model. Re-running the simulations in this way, then
only 5% of the replicates (instead of 96%) are sig-
nificant when testing for environmental mediation
in the first scenario (parental phenotypes influence
the environment). That is, the test for environmental
mediation is no longer massively liberal as correct
type I error rates are obtained when the null hypoth-
esis is true. However, in the second scenario, where
parental genotypes influence the environment, enter-
ing parental phenotypes as covariates does not help:
60% of the replicates are significant. Kendler et al.,
acknowledge the distinction between these two sce-
narios, in that they explicitly present an alternative
model that assumes that parental genotypes (not
phenotypes) directly influence the environment. Such
a model would presumably give correct type I error
rates under the second scenario, but not necessarily
the first. In any case, it would be of interest to
investigate the power of these models and the ability
to distinguish between them. If the power to distin-
guish between models is low, then, in practice, it
seems that models including parental phenotypes will
end up having to make strong and unwarranted
assumptions about the nature of the bivariate rela-
tionship between parental trait and environment.

Finally, it is worth noting that if a similar model
is applied to singleton (i.e., non-twin) data with
parental phenotypes entered as covariates, then sim-
ilar error rates are obtained in the two scenarios (5%
and 40%). That is, at least for the first parental
phenotype model described above, using a twin
design does not offer any additional information,
with respect to testing for environmental mediation,
over a simpler non-twin design. However, it will be
worth investigating other designs, such as the chil-
dren-of-twins design, which may prove useful
to study environmental mediation with obligatory-
shared variables (D’Onofrio et al., 2003).

INDIVIDUAL-SPECIFIC ENVIRONMENTS

The rest of this article concentrates on individ-
ual-specific environments. Some of the methods pre-
viously discussed in the context of obligatory-shared
environments can also be applied to individual-spe-
cific environments: for example, the basic phenotypic
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regression model (PH) and DF model shown in Eq. 2
(DF1). A number of other regression-based methods
exist to assess the effects of individual-specific envi-
ronments. Rodgers et al., (1994) adapted the DF
model specifically for ‘nonshared’ environmental
variables. These authors proposed the model

Y1 ¼ b0 þ b1Y2 þ b2Rþ b3RY2 þ b4ðX1 � X2Þ þ e:

ð3Þ
The test of environmental effects is the 1 df test H0 :
b4=0. This method is labelled NS1 in the simulations
below. This model attempts to specifically focus on
the nonshared component of the individual-specific
environment, by using difference scores to predict
each individual’s phenotype. This type of between-
family/within-family partitioning is also sometimes
used in molecular genetic association studies to con-
trol for population stratification (i.e. as confounding
due to stratification will only influence the between-
family component). However, in the present scenario,
it should be noted that additive genetic factors in DZ
twins will also influence the within–family compo-
nent, as these influences do not work uniformly at the
family-wide level, and therefore the confounding
effect of genes cannot be controlled for by using a
difference measure in this way. As a consequence,
this approach does not provide a valid test of
environmental mediation, as Appendix III illustrates
further.

Rodgers et al (1994) also extended their basic
model to allow for the case where the ‘‘. . . difference
score interacts with the genetic coefficient reflecting
the level of relatedness of the pairs, . . . [which would]
suggest that the type of nonshared influence has a
genetic component’’ as follows:

Y1 ¼ b0 þ b1Rþ b2Y2 þ b3RY2

þ b4ðX1 � X2Þ þ b5RðX1 � X2Þ; ð4Þ

where the test for environmental mediation is a
above, H0 : b4 = 0. The tests of b4 and b5 are labeled
NS2 and NS3 in the simulations below, which illus-
trate that this reformulation does not provide valid
tests of environmental mediation either.

Alternatively, an environmental difference score
can be used to predict a phenotypic difference score.
In particular, difference score approaches have often
been used in studies looking at differences between
MZ twins only:

Y1 � Y2 ¼ b0 þ b1ðX1 � X2Þ þ e: ð5Þ

This is a natural extension of the powerful discordant
MZ pair design. This method is labelled D1 in the
simulations below. To include DZ twins in the same
design, one might use the model (see Appendix II)

Y1 � Y2 ¼ b0 þ b1ðX1 � X2Þ
þ b2ð1� RÞðX1 � X2Þ þ e: ð6Þ

The tests of the coefficients b1 and b2 are labelled D2

and D3 in the simulations below.
Other approaches have focused on using

residuals instead of differences (see Turkheimer and
Waldron, (2000) for a review). For example,
regressing the trait of twin 2 on the trait of twin 1 and
taking the residuals forms the dependent variable.
The predictor variable is formed by regressing the
environmental measure for twin 2 on the environ-
mental measure for twin 1 and taking the residuals.
The test for environmental mediation regresses the
residual trait values on the residual environmental
values, say in MZ twin pairs only. Although this
approach is taken to be similar to the methods using
differences, this is not the case: residuals have differ-
ent statistical properties than differences. Whereas the
difference between two bivariate normal measures
will be uncorrelated with the sum, the residuals gen-
erated after regressing one twin’s score on the other
will still be correlated with sum of the twins’ scores
(to an extent the depends on the twin correlation). As
such, correlating residual measures will not only in-
dex factors that are nonshared between twins. Indeed,
the simulations below, in which this method is
labelled RES, indicate that using residuals does not
lead to valid tests of environmental mediation. The
test, for MZ pairs only, is based on

Y1 � EðY1jY2Þ ¼ b0 þ b1ðX1 � EðX1jX2ÞÞ þ e: ð7Þ
An individual-specific environment can be

incorporated into a bivariate variance components
model as the second dependent variable. In the stan-
dard bivariate Cholesky ACE twin model, the path
from latent variable Vi to observed variable j is de-
noted vij (where X and Y are traits 1 and 2, respec-
tively). In this context, controlling for common
genetic effects between X and Y involves estimating
the a12 parameter (i.e., so that the genetic correlation
between traits is allowed to vary) under both alternate
and null models. Under the null, one could constrain
either H0 : e12=0 to provide a 1 df test of common
nonshared environmental influences, or H0 : c12=e12=0
to provide a 2 df test of common shared and nonsh-
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ared environmental influences. These two tests are
labelledML1 andML2, respectively. Note that testing
e12=0 also provides a test for measurement error that
is correlated between X and Y.

When the environmental variable is individual -
specific, the covariation due to common genetic
influence can be partly estimated, in the same manner
as the standard bivariate twin model. It is worth
noting that any C component of an individual -
specific measured environment could still reflect
‘parental genetic influence’ in the same way as for
obligatory-shared environments, and this component
of covariation would not be controlled for by any of
the designs described above. For the variance com-
ponents models, therefore, the more restrictive ML1

test is guaranteed to be free of common genetic
influence in a way that ML2 (which also tests for
common shared environmental influence) is not.
(This issue is not addressed in the simulations below.)

Finally, as shown in the Appendix and sub-
sequent simulations, the standard DF model which
incorporates a measured environmental term (Eq. 2)
does not in fact control for mediating genetic influ-
ence. One possible revised model which correctly
controls for genetic influence is

Y1 ¼ b1 þ b2Rþ b3Y2 þ b4RY2 þ b5X1

þ b6X2 þ b7RX2; ð8Þ

where a 1 df test for environmental effects controlling
for genetic effects is H0 : b5=b7 (see Appendix III).
This model is labelled DF2 in the simulations below.

We conducted a simulation study to illustrate
the different properties of the above methods. Fur-
ther detail regarding the simulation procedure is gi-
ven in Appendix IV. There were 4 conditions; 500
replicate samples were generated for each condition
and analyzed using all the methods outlined above.
The results we present below are all for single-entry
datasets; as expected, the same pattern of results was
obtained re-running the regression-based methods
using double-entry and correcting the standard errors
of the estimates for the non-independence of the
observations by use of the Huber-White method for
correlated responses. Table 1 shows the different
methods as rows, the different simulation scenarios
as columns labelled A, B, C and D. The table entries
represent the proportion of replicates significant at
the p=0.05 level. Scenario A represents no environ-
mental mediation and no common genetic effects;
scenario B represents no environmental mediation
but common genetic effects; scenario C represents

environmental mediation but no common genetic
effects; scenario D represents both environmental
mediation and common genetic effects. All tests of
environmental mediation should therefore show er-
ror rates not significantly different from the nominal
5% error rate in scenarios A and B; for scenarios C
and D the equivalent figures represent the power to
detect environmental mediation. In particular, we
would expect that tests of environmental mediation
that do not in fact control for common genetic
influence will show values significantly greater than
5% for scenario B.

The results in Table I illustrate that many of
the methods that claim to control for common
genetic influence in fact do not. That is, for scenario
B, we see that DF1, NS1 and NS2, and RES all
detect ‘environmental mediation’ when it is not

Table I. Results of a simulation study comparing methods for

detecting environmental mediation with individual-specific

environments

Test A B C D

PH 0.064 0.996 0.802 1.000

DF1 0.056 0.914 0.626 1.000

NS1 0.060 0.686 0.692 0.998

NS2 0.060 0.768 0.120 0.912

NS3 0.052 0.532 0.062 0.480

RES 0.048 0.644 0.687 0.988

ML1 0.050 0.042 0.520 0.668

ML2 0.062 0.054 0.410 0.574

DF2 0.042 0.052 0.150 0.186

D1 0.046 0.050 0.480 0.502

D2 0.016 0.054 0.416 0.402

D3 0.036 0.646 0.040 0.654

Proportion of replicates significant at the p ¼ 0:05 level. The

columns represent alternative scenarios: if E represents the true

presence of environmental mediation and G represents the true

presence of common genetic effects between trait and environment,

then the four scenarios A, B, C and D correspond to {E), G)},
{E), G+}, {E+, G)} and {E+, G+} respectively. PH is a simple

phenotypic regression (Eq. 1, b1=0); DF1 is the DF model incor-

porating a measured environmental term (Eq. 2, b4=0); NS1 is the

Rodgers et al. basic nonshared test (Eq. 3, b4=0); NS2 is the first

term in the Rodgers et al. extended nonshared test (Eq. 4, b4=0);

NS3 is the second term in the Rodgers et al. extended nonshared test

(Eq. 4, b5=0); RES is a residuals-based regression (Eq. 7, b1=0);

ML1 is the test of common nonshared environmental variance in the

bivariate Cholesky variance components model (e12=0);ML2 is the

test of common shared and nonshared environmental variance in

the bivariate Cholesky variance components model (c12=e12=0);

DF2 is a revised DF model incorporating a measured environmental

term (Eq. 8, b5 ¼ b7); D1 is the basic MZ differences regression

(Eq. 5, b1 ¼ 0); D2 is the first term of the MZ/DZ differences

regression (Eq. 6, b1 ¼ 0); D3 (a test of common genetic influence

rather than environmental mediation) is the second term of the

MZ/DZ differences regression (Eq. 6, b2 ¼ 0).
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present, at very high rates. In contrast, the revised
DF2 model, the difference regression models and the
variance components models correctly control for
common genetic effects when testing for environ-
mental mediation.

The variance components models and the dif-
ference regression tests of environmental mediation
show roughly equivalent power: these values will
differ depending on the genetic and environmental
architecture of the outcome and environment. The
revised DF2 model shows consistently low power
however. In addition, the revised model no longer
has the analytic transparency that perhaps attracts
many researchers to these models over variance
components.

SUMMARY

A number of analytic strategies, including ones
previously used by the current authors, have claimed
in one way or another to control for genetic influence
and allow tests of environmental mediation within
the context of the classical twin design. We have
demonstrated that a number of these approaches are
flawed. Assuming the classical twin design, we would
first advise that efforts to determine environmental
mediation should only be made for individual-specific
environmental variables. The results here suggest that
for obligatory-shared environments, designs other
than the classical twin study need to be considered.
Similar conclusions regarding the application of the
basic twin design to obligatory-shared environments
have also been reached by other reseachers
(Turkheimer et al., under review).

Secondly, in the case of individual-specific envi-
ronments, bivariate variance components or regres-
sion analysis using between- twin differences should
be applied. Variance components approaches have
the advantage of being easily extended to include
other designs and models, whereas difference regres-
sion methods have the advantage of simplicity. Pre-
liminary work suggests that the simple difference
regression model can actually be more powerful than
the variance components in a number of situations –
in particular, the MZ only difference method is a very
efficient design for this specific test (results from
simulations, not shown). However, a full investiga-
tion of the properties of these methods in terms of
statistical power under the alternate hypothesis is
beyond the scope of this research note.

APPENDICES

I. Simulation of twin data with an obligatory-shared

environment

The basic framework for simulation is as
follows: lowercase letters represent coefficients and
uppercase letters represent simulated values. For each
family, we first simulate 11 random standard normal
deviates: paternal and maternal additive genetic
components AP and AM; the family-wide shared
environmental component C, paternal and maternal
nonshared environmental components EP and EM;
the component Rs which influences S; the additive
genetic components unique to the two twins, R1 and
R2, which ensure the additive genetic components are
correlated 0.5 between first-degree relatives; an
environmental component shared only between the
two twins T; finally, two nonshared environmental
components for the two twins, E1 and E2. From
these, the following quantities are calculated:

P ¼ aAP þ cCþ eEp

M ¼ aAM þ cCþ eEM

S ¼ fðPþMÞ=2þ RS

A1 ¼ ðAp þ AMÞ=
ffiffiffi

4
p
þ R1=

ffiffiffi

2
p

A2 ¼ A1 for MZ twins

A2 ¼ ðAp þ AMÞ=
ffiffiffi

4
p
þ R2=

ffiffiffi

2
p

for DZ twins

Y1 ¼ aA1 þ cCþ tTþ eE1 þ sS

Y2 ¼ aA2 þ cCþ tTþ eE2 þ sS;

where a is the additive genetic path; c is a family-wide
shared environmental path; t is a twin-specific shared
environmental path; e is a nonshared environmental
path; f the loading of average parental phenotype on
S; s is the loading of S on twin phenotypes. The
(unobserved) paternal and maternal phenotypes are P
and M, respectively. The observed variables are trait
values for twins 1 and 2 (Y1 and Y2) and the mea-
sured obligatory-shared environment S.

It is an easy matter to construct different
scenarios where, for example, S depends not on the
average parental phenotype, but on the average
parental genotype S=f(Ap+AM)/2+Rs or maternal
genotype S=fAM+Rs; or the shared environment
fC+Rs. So long as S depends to at least some extent
on AP and/or AM, then confounding due to common
genetic variation can occur.

For the simulations reported in the main text, the
parameters were set at a=1, t=c=0, e=1, f=0.5 and
s=0 (i.e., there is no environmental mediation). In the
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first scenario S=f(P+M)/2+Rs; in the second sce-
nario the definition of S is changed to f(AP+AM)/
2+RS. For eachof 500 replicates, 200 MZand200 DZ
twin pairs were generated. The regression-based anal-
yses were performed using the freely-available statis-
tical package R; the variance components models were
fitted using Mx (Neale, 1997).

II. Difference regression

From the Cholesky model, using path tracing
rules, the variable Y1 can be expressed as

Y1 ¼ ða11a12 þ c11c12 þ e11e12ÞX1

þ ðRa11a12 þ c11c12ÞX2

þ ðRða12a12 þ a22a22Þ þ c12c12 þ c22c22ÞY2

and therefore

Y2 ¼ ða11a12 þ c11c12 þ e11e12ÞX2

þ ðRa11a12 þ c11c12ÞX1

þ ðRða12a12 þ a22a22Þ þ c12c12 þ c22c22ÞY1

then taking the difference between the two regression
equations gives the difference model equation

Y1 � Y2 ¼ ða11a12 þ c11c12 þ e11e12ÞX1

þ ðRa11a12 þ c11c12ÞX2

þ ðRða12a12 þ a22a22Þ þ c12c12 þ c22c22ÞY2

� ða11a12 þ c11c12 þ e11e12ÞX2

� ðRa11a12 þ c11c12ÞX1

� ðRða12a12 þ a22a22Þ þ c12c12 þ c22c22ÞY1

¼ ðð1� RÞa11a12 þ e11e12ÞX1

� ðð1� RÞa11a12 þ e11e12ÞX2

� ðRða12a12 þ a22a22Þ þ c12c12 þ c22c22ÞY1

þ ðRða12a12 þ a22a22Þ þ c12c12 þ c22c22ÞY2

¼ ðð1� RÞa11a12 þ e11e12ÞðX1 � X2Þ
þ 0� RðY1 þ Y2Þ
¼ a11a12ð1� RÞðX1 � X2Þ þ e11e12ðX1 � X2Þ

which corresponds to the simple regression given in
Eq. 5 for MZ only pairs and Eq. 6 for MZ and DZ
pairs combined, where b1 is e11e12 and b2 is a11a12.

III. A revised DeFries-Fulker model incorporating a

measured environment

As stated in Appendix II, if

Y1 ¼ ða11a12 þ c11c12 þ e11e12ÞX1

þ ðRa11a12 þ c11c12ÞX2

þ ðRða12a12 þ a22a22Þ þ c12c12 þ c22c22ÞY2:

Adding an intercept term and a term for a mean
difference between zygosity, we can rewrite the above
equation as

Y1 ¼ b1 þ b2Rþ b3Y2 þ b4RY2 þ b5X1 þ b6X2

þ b7RX2

in which case a 1 df test for environmental effects con-
trolling for genetic effects is H0 : b5=b7. This is because
the coefficients for each independent variable are then:

Y2 : b3 ¼ c12c12 þ c22c22
RY2 : b4 ¼ a12a12 þ a22a22
X1 : b5 ¼ a11a12 þ c11c12 þ e11e12
X2 : b6 ¼ c11c12

RX2 : b7 ¼ a11a12

and so testing b5 ) b7=0 is implicitly a test for
c11c12+e11e12=0. This also makes clear why simply
testing b5=0 does not provide a test free from genetic
influence.

This also illustrates why the Rodgers et al for-
mulation regressing a difference score on the indi-
vidual is incorrect: considering the coefficients for the
following four variables

X1 : a11a12 þ c11c12 þ e11e12

X2 : c11c12

RX2 : a11a12

RX1 : 0

we see that the coefficient for (X1)X2) is
a11a12+e11e12 and the coefficient for R(X1)X2) is
)a11a12 In other words, the association is still
confounded by common genetic effects.

Regression-based DF models typically use a
double-entry procedure in practice, e.g. entering both
{twin l, twin 2} and {twin 2, twin l}, which, under the
assumption of interchangeability between twin 1 and
twin 2, is one way to utilize all the data, i.e. not just
the regression of twin 1 on twin 2 as above. Although
this practice leads to incorrect standard errors for the
parameter estimates (albeit ones which can be easily
corrected by use of the Huber-White method to
correct for correlated responses, for example), it will
not alter the expected values of the parameters, under
the assumption of interchangeability. That is, if the
regression of twin 1 on twin 2 has an expected value
of b for the regression coefficient, then, given
the interchangeability of twins, it follows that the
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regression of twin 2 on twin 1 must also have an
expected value of b. As interchangeability implies
that twin 1 and twin 2 are expected to have identical
distributions, then it also follows that the same
regression performed on the double-entered dataset
(i.e. simply the concatenation of the two single-entry
datasets) would also have an expected value of b.
Under the assumption of interchangeability, double-
entry affects only the standard errors, and is therefore
only relevant when considering issues of statistical
significance and power, not when considering
parameter expectations.

IV. Simulation of twin data with an individual-specific

environment

From the bivariate Cholesky formulation, the
paths for latent variable V are repre-

sented
vXX

vXY vYY

� �

where vij represents the path

from latent variable Vi to observed variable j. When
common genetic effect were generated, the bivariate

structure
1
1 0

� �

was used, implying complete ge-

netic correlation; otherwise
1
0 1

� �

was used. No

common shared or nonshared environmental effects
were generated in the simulations presented here
(other than those induced by the causal, environ-
mental mediation path when present). Both single
and double entry approaches were used, although the
results are only presented for single-entry (double-
entry gave a similar pattern of results). In all cases,
100 MZ and 100 DZ pairs were simulated for 500
replicates. The regression-based analyses were per-
formed using the freely-available statistical package
R; the variance components models were fitted using
Mx (Neale, 1997).

ACKNOWLEDGMENTS

The authors would particularly like to acknowl-
edge Pak Sham and Fruhling Rijsdijk for suggesting
the revised DF2 model; also Avshalom Caspi and
Temi Moffitt for helpful discussion. SP is supported
by a UK Medical Research Council Research Train-

ing Fellowship in Bioinformatics; KCK is supported
by NIMH grant 1K08MH070627.

REFERENCES

Caspi, A., Taylor, A., Moffitt, T., and Plomin, R. (2000). Neigh-
borhood deprivation affects children’s mental health: envi-
ronmental risks identified in a genetic design. Psychol. Sci.
11(4), 338–342.

DeFries, J., and Fulker, D. (1985). Multiple regression analysis of
twin data. Behav. Genet. 15(5), 467–473.

DeFries, J., and Fulker, D. (1988). Multiple regression analysis of
twin data: etiology of deviant scores versus individual differ-
ences. Acta Genet. Med. Gemel. 37:205–216.

DiLalla, L., and Gottesman, I. (1991). Biological and genetic
contributors to violence–Widom’s untold tale. Psychol. Bull.
109:125–129.

D’Onofrio, B., Turkheimer, E., Eaves, L., Corey, L., Berg, K.,
Solaas, M., and Emery, R. (2003). The role of the children of
twins design in elucidating causal relations between parent
characteristics and child outcomes. J. Child Psychol. Psychia-
try 44(8), 1130–44.

Jaffee, S. R., Caspi, A., Moffitt, T. E., and Taylor, A. (2004).
Physical maltreatment victim to antisocial child: Evidence of
an environmentally mediated process. J. Abnorm. Psychol.
113(1), 44–55.

Kendler, K., Neale, M., Prescott, C., Kessler, R., Heath, A.,
Corey, L., and Eaves, L. (1996). Childhood parental loss
and alcoholism in women: a causal analysis using a twin-
family design. Psychol. Med. 26(1), 79–95.

Koenen, K., Moffitt, T., Caspi, A., Taylor, A., and Purcell, S.
(2003). Domestic violence is associated with environmental
suppression of iq in young children. Dev. Psychopathol. 15(2),
297–311.

Miller, P., Mulvery, C., and Martin, N. (2001). Genetic and envi-
ronmental contributions to educational attainment in
Australia. Econ. Educ. Rev. 20:211–224.

Neale, M. (1997). Mx: Statistical modeling. Box 980126 VCU,
Richmond VA 23298.

Plomin, R., and Bergeman, C. S. (1991). The nature of nurture:
genetic influence on environmental measures. Behav. Brain Sci.
14(3), 373–386.

Rodgers, J. L., Rowe, D. C., and Chengchang, L. (1994). Beyond
nature versus nurture: DF analysis of nonshared influences on
problem behaviors. Dev. Psychol. 30(3), 374–384.

Turkheimer, E., D’Onofrio, B., Maes, H., and Eaves, L. (Manu-
script under reivew).

Turkheimer, E., D’Onofrio, B., Maes, H., Eaves, L., and
Waldron, M. (2000). Nonshared environment: a theoretical,
methodological and quantitative review. Psychol. Bull.
126(1), 78–108.

Widom, C. (1989). Does violence beget violence? A critical exam-
ination of the literature. Psychol. Bull. 106(1), 3–28.

Edited by Stacey Cherny

498 Purcell and Koenen


